Vertical Distribution of Aersols and Water Vapor Using CRISM Limb Observations

التفاصيل البيبلوغرافية
العنوان: Vertical Distribution of Aersols and Water Vapor Using CRISM Limb Observations
المؤلفون: Smith, Michael D, Wolff, Michael J, Clancy, R. Todd
بيانات النشر: United States: NASA Center for Aerospace Information (CASI), 2011.
سنة النشر: 2011
مصطلحات موضوعية: Astronomy
الوصف: Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of C02 (or surface pressure) and H20 gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 run for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal available from aerosol scattering.
نوع الوثيقة: Report
اللغة: English
الوصول الحر: https://ntrs.nasa.gov/citations/20110022478Test
رقم الانضمام: edsnas.20110022478
قاعدة البيانات: NASA Technical Reports