دورية أكاديمية

Wnt/β-catenin signaling pathway as an important mediator in muscle and bone crosstalk: A systematic review

التفاصيل البيبلوغرافية
العنوان: Wnt/β-catenin signaling pathway as an important mediator in muscle and bone crosstalk: A systematic review
المؤلفون: Wujian Lin, Simon Kwoon Ho Chow, Can Cui, Chaoran Liu, Qianjin Wang, Senlin Chai, Ronald Man Yeung Wong, Ning Zhang, Wing Hoi Cheung
المصدر: Journal of Orthopaedic Translation, Vol 47, Iss , Pp 63-73 (2024)
بيانات النشر: Elsevier, 2024.
سنة النشر: 2024
المجموعة: LCC:Diseases of the musculoskeletal system
مصطلحات موضوعية: Bone, Crosstalk, Muscle, Osteoporosis, Sarcopenia, Wnt/β-catenin, Diseases of the musculoskeletal system, RC925-935
الوصف: Background: The interaction between muscle and bone is shown to be clinically important but the underlying mechanisms are largely unknown. The canonical Wnt/β-catenin signaling pathway is reported to be involved in muscle-bone crosstalk, but its detailed function remains unclear. This systematic review aims to investigate and elucidate the role of the Wnt/β-catenin signaling pathways in muscle-bone crosstalk. Methods: We conducted a literature search on the Web of Science, PubMed, EBSCO and Embase with keywords “Wnt*”, “bone*” and “muscle*”. A systematic review was completed according to the guideline of preferred reporting items of systematic reviews and meta-analyses (PRISMA). Data synthesis included species (human, animal or cell type used), treatments involved, outcome measures and key findings with respect to Wnts. Results: Seventeen papers were published from 2007 to 2021 and were extracted from a total of 1529 search results in the databases of Web of Science (468 papers), PubMed (457 papers), EBSCO (371) and Embase (233). 12 Wnt family members were investigated in the papers, including Wnt1, Wnt2, Wnt2b, Wnt3a, Wnt4, Wnt5a, Wnt8a, Wnt8b, Wnt9a, Wnt10a, Wnt10b and Wnt16. Many studies showed that muscles were able to increase or decrease osteogenesis of bone, while bone increased myogenesis of muscle through Wnt/β-catenin signaling pathways. Wnt3a, Wnt4 and Wnt10b were shown to play important roles in the crosstalk between muscle and bone. Conclusions: Wnt3a, Wnt4 and Wnt10b are found to play important mediatory roles in muscle-bone crosstalk. The role of Wnt4 was mostly found to regulate muscle from the bone side. Whilst the role of Wnt10b during muscle ageing was proposed, current evidence is insufficient to clarify the specific role of Wnt/β-catenin signaling in the interplay between sarcopenia and osteoporosis. More future studies are required to investigate the exact regulatory roles of Wnts in muscle-bone crosstalk in musculoskeletal disease models such as sarcopenia and osteoporosis. Translational potential of this article: The systematic review provides an extensive overview to reveal the roles of Wnt/β-catenin signaling pathways in muscle-bone crosstalk. These results provide novel research directions to further understand the underlying mechanism of sarcopenia, osteoporosis, and their crosstalk, finally helping the future development of new therapeutic interventions.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2214-031X
العلاقة: http://www.sciencedirect.com/science/article/pii/S2214031X24000512Test; https://doaj.org/toc/2214-031XTest
DOI: 10.1016/j.jot.2024.06.003
الوصول الحر: https://doaj.org/article/eb769159cca94125b8757e5429c24739Test
رقم الانضمام: edsdoj.b769159cca94125b8757e5429c24739
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:2214031X
DOI:10.1016/j.jot.2024.06.003