دورية أكاديمية

Silicon dioxide nanoparticles decorated on graphene oxide nanosheets and their application in poly(l-lactic acid) scaffold

التفاصيل البيبلوغرافية
العنوان: Silicon dioxide nanoparticles decorated on graphene oxide nanosheets and their application in poly(l-lactic acid) scaffold
المؤلفون: Cijun Shuai, Feng Yang, Yang Shuai, Shuping Peng, Shijie Chen, Youwen Deng, Pei Feng
المصدر: Journal of Advanced Research, Vol 48, Iss , Pp 175-190 (2023)
بيانات النشر: Elsevier, 2023.
سنة النشر: 2023
المجموعة: LCC:Medicine (General)
LCC:Science (General)
مصطلحات موضوعية: Graphene oxide, Silicon dioxide, In situ growth, Bone scaffold, Medicine (General), R5-920, Science (General), Q1-390
الوصف: Introduction: The aggregation of graphene oxide (GO) is considered as main challenge, although GO possesses excellent mechanical properties which arouses widespread attention as reinforcement for polymers. Objectives: In this study, silicon dioxide (SiO2) nanoparticles were decorated onto surface of GO nanosheets through in situ growth method for promoting dispersion of GO in poly(l-lactic acid) (PLLA) bone scaffold. Methods: Hydroxyl and carboxyl functional groups of GO provided sites for SiO2 nucleation, and SiO2 grew with hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) and finally formed nanoparticles onto surface of GO with covalent bonds. Then, the GO@ SiO2 nanocomposite was blended with PLLA for the fabrication of bone scaffold by selective laser sintering (SLS). Result: The results indicated that the obtained SiO2 were distributed relatively uniformly on surface of GO under TEOS concentration of 0.10 mol/L (GO@SiO2-10), and the covering of SiO2 on GO could increase interlayer distance of GO nanosheets from 0.799 nm to 0.894 nm, thus reducing van der Waals forces between GO nanosheets and facilitating the dispersion. Tensile and compressive strength of scaffold containing GO@SiO2 hybrids were significantly enhanced, especially for the scaffold containing GO@SiO2-10 hybrids with enhancement of 30.95 % in tensile strength and 66.33 % in compressive strength compared with the scaffold containing GO. Additionally, cell adhesion and fluorescence experiments demonstrated excellent cytocompatibility of the scaffold. Conclusions: The good dispersion of GO@SiO2 enhances the mechanical properties and cytocompatibility of scaffold, making it a potential candidate for bone tissue engineering applications.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2090-1232
العلاقة: http://www.sciencedirect.com/science/article/pii/S2090123222001989Test; https://doaj.org/toc/2090-1232Test
DOI: 10.1016/j.jare.2022.08.017
الوصول الحر: https://doaj.org/article/9a60e33e8a594fdaac571604a7a5fed3Test
رقم الانضمام: edsdoj.9a60e33e8a594fdaac571604a7a5fed3
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20901232
DOI:10.1016/j.jare.2022.08.017