دورية أكاديمية

Pulse wave signal-driven machine learning for identifying left ventricular enlargement in heart failure patients

التفاصيل البيبلوغرافية
العنوان: Pulse wave signal-driven machine learning for identifying left ventricular enlargement in heart failure patients
المؤلفون: Dandan Wu, Ryohei Ono, Sirui Wang, Yoshio Kobayashi, Koichi Sughimoto, Hao Liu
المصدر: BioMedical Engineering OnLine, Vol 23, Iss 1, Pp 1-15 (2024)
بيانات النشر: BMC, 2024.
سنة النشر: 2024
المجموعة: LCC:Medical technology
مصطلحات موضوعية: Pulse wave, Left ventricular enlargement, Heart failure, Machine learning, Weighted random forest, Densely connected convolutional networks, Medical technology, R855-855.5
الوصف: Abstract Background Left ventricular enlargement (LVE) is a common manifestation of cardiac remodeling that is closely associated with cardiac dysfunction, heart failure (HF), and arrhythmias. This study aimed to propose a machine learning (ML)-based strategy to identify LVE in HF patients by means of pulse wave signals. Method We constructed two high-quality pulse wave datasets comprising a non-LVE group and an LVE group based on the 264 HF patients. Fourier series calculations were employed to determine if significant frequency differences existed between the two datasets, thereby ensuring their validity. Then, the ML-based identification was undertaken by means of classification and regression models: a weighted random forest model was employed for binary classification of the datasets, and a densely connected convolutional network was utilized to directly estimate the left ventricular diastolic diameter index (LVDdI) through regression. Finally, the accuracy of the two models was validated by comparing their results with clinical measurements, using accuracy and the area under the receiver operating characteristic curve (AUC-ROC) to assess their capability for identifying LVE patients. Results The classification model exhibited superior performance with an accuracy of 0.91 and an AUC-ROC of 0.93. The regression model achieved an accuracy of 0.88 and an AUC-ROC of 0.89, indicating that both models can quickly and accurately identify LVE in HF patients. Conclusion The proposed ML methods are verified to achieve effective classification and regression with good performance for identifying LVE in HF patients based on pulse wave signals. This study thus demonstrates the feasibility and potential of the ML-based strategy for clinical practice while offering an effective and robust tool for diagnosing and intervening ventricular remodeling.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1475-925X
العلاقة: https://doaj.org/toc/1475-925XTest
DOI: 10.1186/s12938-024-01257-5
الوصول الحر: https://doaj.org/article/8f356461431b4cbe9fe6c3553fac92dfTest
رقم الانضمام: edsdoj.8f356461431b4cbe9fe6c3553fac92df
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:1475925X
DOI:10.1186/s12938-024-01257-5