دورية أكاديمية

Responses of Phosphate-Solubilizing Microorganisms Mediated Phosphorus Cycling to Drought-Flood Abrupt Alternation in Summer Maize Field Soil

التفاصيل البيبلوغرافية
العنوان: Responses of Phosphate-Solubilizing Microorganisms Mediated Phosphorus Cycling to Drought-Flood Abrupt Alternation in Summer Maize Field Soil
المؤلفون: Wuxia Bi, Baisha Weng, Denghua Yan, Hao Wang, Mengke Wang, Siying Yan, Lanshu Jing, Tiejun Liu, Wenjuan Chang
المصدر: Frontiers in Microbiology, Vol 12 (2022)
بيانات النشر: Frontiers Media S.A., 2022.
سنة النشر: 2022
المجموعة: LCC:Microbiology
مصطلحات موضوعية: drought-flood abrupt alternation, phosphorus cycling, phosphate-solubilizing bacteria, metagenome, farmland ecosystem network, Microbiology, QR1-502
الوصف: Soil microbial communities are essential to phosphorus (P) cycling, especially in the process of insoluble phosphorus solubilization for plant P uptake. Phosphate-solubilizing microorganisms (PSM) are the dominant driving forces. The PSM mediated soil P cycling is easily affected by water condition changes due to extreme hydrological events. Previous studies basically focused on the effects of droughts, floods, or drying-rewetting on P cycling, while few focused on drought-flood abrupt alternation (DFAA), especially through microbial activities. This study explored the DFAA effects on P cycling mediated by PSM and P metabolism-related genes in summer maize field soil. Field control experiments were conducted to simulate two levels of DFAA (light drought-moderate flood, moderate drought-moderate flood) during two summer maize growing periods (seeding-jointing stage, tasseling-grain filling stage). Results showed that the relative abundance of phosphate-solubilizing bacteria (PSB) and phosphate-solubilizing fungi (PSF) increased after DFAA compared to the control system (CS), and PSF has lower resistance but higher resilience to DFAA than PSB. Significant differences can be found on the genera Pseudomonas, Arthrobacter, and Penicillium, and the P metabolism-related gene K21195 under DFAA. The DFAA also led to unstable and dispersed structure of the farmland ecosystem network related to P cycling, with persistent influences until the mature stage of summer maize. This study provides references for understanding the micro process on P cycling under DFAA in topsoil, which could further guide the DFAA regulations.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1664-302X
العلاقة: https://www.frontiersin.org/articles/10.3389/fmicb.2021.768921/fullTest; https://doaj.org/toc/1664-302XTest
DOI: 10.3389/fmicb.2021.768921
الوصول الحر: https://doaj.org/article/e8d64696b4b34d96baae1618fd306730Test
رقم الانضمام: edsdoj.8d64696b4b34d96baae1618fd306730
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:1664302X
DOI:10.3389/fmicb.2021.768921