دورية أكاديمية

Translational Medicine in Uremic Vascular Calcification: Scavenging ROS Attenuates p-Cresyl Sulfate-Activated Caspase-1, NLRP3 Inflammasome and Eicosanoid Inflammation in Human Arterial Smooth Muscle Cells

التفاصيل البيبلوغرافية
العنوان: Translational Medicine in Uremic Vascular Calcification: Scavenging ROS Attenuates p-Cresyl Sulfate-Activated Caspase-1, NLRP3 Inflammasome and Eicosanoid Inflammation in Human Arterial Smooth Muscle Cells
المؤلفون: Jia-Feng Chang, Hsiao-Ling Kuo, Shih-Hao Liu, Chih-Yu Hsieh, Chih-Ping Hsu, Kuo-Chin Hung, Ting-Ming Wang, Chang-Chin Wu, Kuo-Cheng Lu, Wei-Ning Lin, Chi-Feng Hung, Wen-Chin Ko
المصدر: Life, Vol 12, Iss 5, p 769 (2022)
بيانات النشر: MDPI AG, 2022.
سنة النشر: 2022
المجموعة: LCC:Science
مصطلحات موضوعية: Caspase-1, COX2, cPLA2, IL-1β, inflammasome, NLRP3, Science
الوصف: We formerly proved that uremic vascular calcification (UVC) correlates tightly with oxidative elastic lamina (EL) injury and two cell fates (apoptosis and osteocytic conversion) in smooth muscle cells (SMC) of chronic kidney disease (CKD) patients and eliminating p-cresyl sulfate (PCS)-activated intracellular ROS ameliorates the MAPK signaling pathway in a human arterial SMC (HASMC) model. Nonetheless, whether ROS scavenger attenuates PCS-triggered inflammasome activation and eicosanoid inflammation in the UVC process remains unknown. Patients with lower extremity amputation were categorized into CKD and normal control group according to renal function. We used immunohistochemistry stain to analyze UVC in arterial specimens, including oxidative injury (8-hydroxy-2′-deoxyguanosine (8-OHdG) and internal EL disruption), cytosolic phospholipase A2 (cPLA2), cyclooxygenase 2 (COX2), interleukin-1 beta (IL-1β), caspase-1 and NLRP3. To simulate the patho-mechanism of human UVC, the therapeutic effects of ROS scavenger on PCS-triggered inflammatory pathways was explored in a HASMC model. We found CKD patients had higher circulating levels of PCS and an increase in medial arterial calcification than the control group. In CKD arteries, the severity of UVC corresponded with expressions of oxidative EL disruption and 8-OHdG. Furthermore, coupling expressions of cPLA2 and COX2 were accentuated in CKD arteries, indicative of eicosanoid inflammation. Notably, tissue expressions of IL-1β, caspase-1 and NLRP3 were enhanced in parallel with UVC severity, indicative of inflammasome activation. From bedside to bench, ROS scavenger attenuates PCS-activated expressions of cPLA2/COX2, pro-caspase-1 and NLRP3 in the HASMC model. UVC as an inevitable outcome is predictive of death in CKD patients. Nonetheless, UVC remain pharmacoresistant despite the evolution of treatment for mineral-parathyroid hormone-vitamin D axis. Beyond the mineral dysregulation, the stimulation of pro-oxidant PCS alone results in eicosanoid inflammation and inflammasome activation. Concerning the key role of Caspase-1 in pyroptosis, cell fates of HASMC in uremic milieu are not limited to apoptosis and osteogenesis. In view of this, reducing ROS and PCS may act as a therapeutic strategy for UVC-related cardiovascular events in CKD patients.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2075-1729
العلاقة: https://www.mdpi.com/2075-1729/12/5/769Test; https://doaj.org/toc/2075-1729Test
DOI: 10.3390/life12050769
الوصول الحر: https://doaj.org/article/a7421f66c71f48919c4f2adbd62af37fTest
رقم الانضمام: edsdoj.7421f66c71f48919c4f2adbd62af37f
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20751729
DOI:10.3390/life12050769