دورية أكاديمية

Selection and thermal physical characteristics analysis of in-situ condition preserved coring lunar rock simulant in extreme environment

التفاصيل البيبلوغرافية
العنوان: Selection and thermal physical characteristics analysis of in-situ condition preserved coring lunar rock simulant in extreme environment
المؤلفون: Haichun Hao, Mingzhong Gao, Cunbao Li, Xuan Wang, Yan Wu, Zheng Gao, Wen Yu, Xuemin Zhou
المصدر: International Journal of Mining Science and Technology, Vol 33, Iss 11, Pp 1411-1424 (2023)
بيانات النشر: Elsevier, 2023.
سنة النشر: 2023
المجموعة: LCC:Mining engineering. Metallurgy
مصطلحات موضوعية: Lunar-based, Lunar rock simulant, Extreme environment, Thermal physical properties, Mining engineering. Metallurgy, TN1-997
الوصف: With the increasing scarcity of Earth’s resources and the development of space science and technology, the exploration, development, and utilization of deep space-specific material resources (minerals, water ice, volatile compounds, etc.) are not only important to supplement the resources and reserves on Earth but also provide a material foundation for establishing extraterrestrial research bases. To achieve large depth in-situ condition-preserved coring (ICP-Coring) in the extreme lunar environment, first, lunar rock simulant was selected (SZU-1), which has a material composition, element distribution, and physical and mechanical properties that are approximately equivalent to those of lunar mare basalt. Second, the influence of the lunar-based in-situ environment on the phase, microstructure, and thermal physical properties (specific heat capacity, thermal conductivity, thermal diffusivity, and thermal expansion coefficient) of SZU-1 was explored and compared with the measured lunar rock data. It was found that in an air atmosphere, low temperature has a more pronounced effect on the relative content of olivine than other temperatures, while in a vacuum atmosphere, the relative contents of olivine and anorthite are significantly affected only at temperatures of approximately −20 and 200 °C. When the vacuum level is less than 100 Pa, the contribution of air conduction can be almost neglected, whereas it becomes dominant above this threshold. Additionally, as the testing temperature increases, the surface of SZU-1 exhibits increased microcracking, fracture opening, and unevenness, while the specific heat capacity, thermal conductivity, and thermal expansion coefficient show nonlinear increases. Conversely, the thermal diffusivity exhibits a nonlinear decreasing trend. The relationship between thermal conductivity, thermal diffusivity, and temperature can be effectively described by an exponential function (R2>0.98). The research results are consistent with previous studies on real lunar rocks. These research findings are expected to be applied in the development of the test and analysis systems of ICP-Coring in a lunar environment and the exploration of the mechanism of machine-rock interaction in the in-situ drilling and coring process.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2095-2686
العلاقة: http://www.sciencedirect.com/science/article/pii/S2095268623001155Test; https://doaj.org/toc/2095-2686Test
DOI: 10.1016/j.ijmst.2023.07.010
الوصول الحر: https://doaj.org/article/733767dcf63841a8a8baa8701a51cc92Test
رقم الانضمام: edsdoj.733767dcf63841a8a8baa8701a51cc92
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20952686
DOI:10.1016/j.ijmst.2023.07.010