دورية أكاديمية

Potential Effects of Ibuprofen, Remdesivir and Omeprazole on Dexamethasone Metabolism in Control Sprague Dawley Male Rat Liver Microsomes (Drugs Often Used Together Alongside COVID-19 Treatment)

التفاصيل البيبلوغرافية
العنوان: Potential Effects of Ibuprofen, Remdesivir and Omeprazole on Dexamethasone Metabolism in Control Sprague Dawley Male Rat Liver Microsomes (Drugs Often Used Together Alongside COVID-19 Treatment)
المؤلفون: Amira Hussain, Declan P. Naughton, James Barker
المصدر: Molecules, Vol 27, Iss 7, p 2238 (2022)
بيانات النشر: MDPI AG, 2022.
سنة النشر: 2022
المجموعة: LCC:Organic chemistry
مصطلحات موضوعية: cytochrome P450, remdesivir, omeprazole, ibuprofen, rat liver microsomes, CYP3A activity, Organic chemistry, QD241-441
الوصف: The role of individual cytochrome P450 (CYPs) responsible for the drug metabolism can be determined through their chemical inhibition. During the pandemic, dexamethasone and remdesivir with omeprazole were used for the treatment of COVID-19, while Ibuprofen was taken to treat the symptoms of fever and headache. This study aimed to examine the potency of ibuprofen remdesivir, and omeprazole as inhibitors of cytochrome P450s using rat liver microsomes in vitro. Dexamethasone a corticosteroid, sometimes used to reduce the body’s immune response in the treatment of COVID-19, was used as a probe substrate and the three inhibitors were added to the incubation system at different concentrations and analysed by a validated High Performance Liquid Chromatography (HPLC) method. The CYP3A2 isoenzyme is responsible for dexamethasone metabolism in vitro. The results showed that ibuprofen acts as a non-competitive inhibitor for CYP3A2 activity with Ki = 224.981 ± 1.854 µM and IC50 = 230.552 ± 2.020 µM, although remdesivir showed a mixed inhibition pattern with a Ki = 22.504 ± 0.008 µM and IC50 = 45.007 ± 0.016 µM. Additionally, omeprazole uncompetitively inhibits dexamethasone metabolism by the CYP3A2 enzyme activity with a Ki = 39.175 ± 0.230 µM and IC50 = 78.351 ± 0.460 µM. These results suggest that the tested inhibitors would not exert a significant effect on the CYP3A2 isoenzyme responsible for the co-administered dexamethasone drug’s metabolism in vivo.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1420-3049
العلاقة: https://www.mdpi.com/1420-3049/27/7/2238Test; https://doaj.org/toc/1420-3049Test
DOI: 10.3390/molecules27072238
الوصول الحر: https://doaj.org/article/aed59946d5ba4b38ae4fea6672d031b2Test
رقم الانضمام: edsdoj.59946d5ba4b38ae4fea6672d031b2
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14203049
DOI:10.3390/molecules27072238