دورية أكاديمية

A simple yet consistent constitutive law and mortar-based layer coupling schemes for thermomechanical macroscale simulations of metal additive manufacturing processes

التفاصيل البيبلوغرافية
العنوان: A simple yet consistent constitutive law and mortar-based layer coupling schemes for thermomechanical macroscale simulations of metal additive manufacturing processes
المؤلفون: Sebastian D. Proell, Wolfgang A. Wall, Christoph Meier
المصدر: Advanced Modeling and Simulation in Engineering Sciences, Vol 8, Iss 1, Pp 1-37 (2021)
بيانات النشر: SpringerOpen, 2021.
سنة النشر: 2021
المجموعة: LCC:Mechanics of engineering. Applied mechanics
LCC:Systems engineering
مصطلحات موضوعية: Constitutive model, Thermomechanical coupling, Metal additive manufacturing, Mortar method, Finite element method, Mechanics of engineering. Applied mechanics, TA349-359, Systems engineering, TA168
الوصف: Abstract This article proposes a coupled thermomechanical finite element model tailored to the macroscale simulation of metal additive manufacturing processes such as selective laser melting. A first focus lies on the derivation of a consistent constitutive law on basis of a Voigt-type spatial homogenization procedure across the relevant phases, powder, melt and solid. The proposed constitutive law accounts for the irreversibility of phase change and consistently represents thermally induced residual stresses. In particular, the incorporation of a reference strain term, formulated in rate form, allows to consistently enforce a stress-free configuration for newly solidifying material at melt temperature. Application to elementary test cases demonstrates the validity of the proposed constitutive law and allows for a comparison with analytical and reference solutions. Moreover, these elementary solidification scenarios give detailed insights and foster understanding of basic mechanisms of residual stress generation in melting and solidification problems with localized, moving heat sources. As a second methodological aspect, dual mortar mesh tying strategies are proposed for the coupling of successively applied powder layers. This approach allows for very flexible mesh generation for complex geometries. As compared to collocation-type coupling schemes, e.g., based on hanging nodes, these mortar methods enforce the coupling conditions between non-matching meshes in an $$L^2$$ L 2 -optimal manner. The combination of the proposed constitutive law and mortar mesh tying approach is validated on realistic three-dimensional examples, representing a first step towards part-scale predictions.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2213-7467
العلاقة: https://doaj.org/toc/2213-7467Test
DOI: 10.1186/s40323-021-00209-1
الوصول الحر: https://doaj.org/article/4530a9a1ad1e4810a627de869d119e87Test
رقم الانضمام: edsdoj.4530a9a1ad1e4810a627de869d119e87
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:22137467
DOI:10.1186/s40323-021-00209-1