دورية أكاديمية

Bacterial Signatures of Paediatric Respiratory Disease: An Individual Participant Data Meta-Analysis

التفاصيل البيبلوغرافية
العنوان: Bacterial Signatures of Paediatric Respiratory Disease: An Individual Participant Data Meta-Analysis
المؤلفون: David T. J. Broderick, David W. Waite, Robyn L. Marsh, Carlos A. Camargo, Paul Cardenas, Anne B. Chang, William O. C. Cookson, Leah Cuthbertson, Wenkui Dai, Mark L. Everard, Alain Gervaix, J. Kirk Harris, Kohei Hasegawa, Lucas R. Hoffman, Soo-Jong Hong, Laurence Josset, Matthew S. Kelly, Bong-Soo Kim, Yong Kong, Shuai C. Li, Jonathan M. Mansbach, Asuncion Mejias, George A. O’Toole, Laura Paalanen, Marcos Pérez-Losada, Melinda M. Pettigrew, Maxime Pichon, Octavio Ramilo, Lasse Ruokolainen, Olga Sakwinska, Patrick C. Seed, Christopher J. van der Gast, Brandie D. Wagner, Hana Yi, Edith T. Zemanick, Yuejie Zheng, Naveen Pillarisetti, Michael W. Taylor
المصدر: Frontiers in Microbiology, Vol 12 (2021)
بيانات النشر: Frontiers Media S.A., 2021.
سنة النشر: 2021
المجموعة: LCC:Microbiology
مصطلحات موضوعية: microbiota (16S), respiratory tract, respiratory infection, paediatrics, meta-analysis, individual participant data (IPD) meta-analysis, Microbiology, QR1-502
الوصف: Introduction: The airway microbiota has been linked to specific paediatric respiratory diseases, but studies are often small. It remains unclear whether particular bacteria are associated with a given disease, or if a more general, non-specific microbiota association with disease exists, as suggested for the gut. We investigated overarching patterns of bacterial association with acute and chronic paediatric respiratory disease in an individual participant data (IPD) meta-analysis of 16S rRNA gene sequences from published respiratory microbiota studies.Methods: We obtained raw microbiota data from public repositories or via communication with corresponding authors. Cross-sectional analyses of the paediatric (10 case subjects were included. Sequence data were processed using a uniform bioinformatics pipeline, removing a potentially substantial source of variation. Microbiota differences across diagnoses were assessed using alpha- and beta-diversity approaches, machine learning, and biomarker analyses.Results: We ultimately included 20 studies containing individual data from 2624 children. Disease was associated with lower bacterial diversity in nasal and lower airway samples and higher relative abundances of specific nasal taxa including Streptococcus and Haemophilus. Machine learning success in assigning samples to diagnostic groupings varied with anatomical site, with positive predictive value and sensitivity ranging from 43 to 100 and 8 to 99%, respectively.Conclusion: IPD meta-analysis of the respiratory microbiota across multiple diseases allowed identification of a non-specific disease association which cannot be recognised by studying a single disease. Whilst imperfect, machine learning offers promise as a potential additional tool to aid clinical diagnosis.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1664-302X
العلاقة: https://www.frontiersin.org/articles/10.3389/fmicb.2021.711134/fullTest; https://doaj.org/toc/1664-302XTest
DOI: 10.3389/fmicb.2021.711134
الوصول الحر: https://doaj.org/article/c272f2281790452aa37d24bfbb50f88dTest
رقم الانضمام: edsdoj.272f2281790452aa37d24bfbb50f88d
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:1664302X
DOI:10.3389/fmicb.2021.711134