دورية أكاديمية

Metabolic Plasticity and Combinatorial Radiosensitisation Strategies in Human Papillomavirus-Positive Squamous Cell Carcinoma of the Head and Neck Cell Lines

التفاصيل البيبلوغرافية
العنوان: Metabolic Plasticity and Combinatorial Radiosensitisation Strategies in Human Papillomavirus-Positive Squamous Cell Carcinoma of the Head and Neck Cell Lines
المؤلفون: Mark D. Wilkie, Emad A. Anaam, Andrew S. Lau, Carlos P. Rubbi, Nikolina Vlatkovic, Terence M. Jones, Mark T. Boyd
المصدر: Cancers, Vol 13, Iss 19, p 4836 (2021)
بيانات النشر: MDPI AG, 2021.
سنة النشر: 2021
المجموعة: LCC:Neoplasms. Tumors. Oncology. Including cancer and carcinogens
مصطلحات موضوعية: p53, cancer, glycolysis, oxidative phosphorylation, metabolism, head and neck cancer, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, RC254-282
الوصف: Background: A major objective in the management of human papillomavirus (HPV)-positive squamous cell carcinoma of the head and neck (SCCHN) is to reduce long-term functional ramifications while maintaining oncological outcomes. This study examined the metabolic profile of HPV-positive SCCHN and the potential role of anti-metabolic therapeutics to achieve radiosensitisation as a potential means to de-escalate radiation therapy. Methods: Three established HPV-positive SCCHN cell lines were studied (UM-SCC-104, UPCI:SCC154, and VU-SCC-147), together with a typical TP53 mutant HPV-negative SCCHN cell line (UM-SCC-81B) for comparison. Metabolic profiling was performed using extracellular flux analysis during specifically designed mitochondrial and glycolytic stress tests. Sensitivity to ionising radiation (IR) was evaluated using clonogenic assays following no treatment, or treatment with: 25 mM 2-deoxy-D-glucose (glycolytic inhibitor) alone; 20 mM metformin (electron transport chain inhibitor) alone; or 25 mM 2-deoxy-D-glucose and 20 mM metformin combined. Expression levels of p53 and reporters of p53 function (MDM2, p53, Phospho-p53 [Ser15], TIGAR and p21 [CDKN1A]) were examined by western blotting. Results: HPV-positive SCCHN cell lines exhibited a diverse metabolic phenotype, displaying robust mitochondrial and glycolytic reserve capacities. This metabolic profile, in turn, correlated with IR response following administration of anti-metabolic agents, in that both 2-deoxy-D-glucose and metformin were required to significantly potentiate the effects of IR in these cell lines. Conclusions: In contrast to our recently published data on HPV-negative SCCHN cells, which display relative glycolytic dependence, HPV-positive SCCHN cells can only be sensitised to IR using a complex anti-metabolic approach targeting both mitochondrial respiration and glycolysis, reflecting their metabolically diverse phenotype. Notionally, this may provide an attractive platform for treatment de-intensification in the clinical setting by facilitating IR dose reduction to minimise the impact of treatment on long-term function.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 13194836
2072-6694
العلاقة: https://www.mdpi.com/2072-6694/13/19/4836Test; https://doaj.org/toc/2072-6694Test
DOI: 10.3390/cancers13194836
الوصول الحر: https://doaj.org/article/23d8e746b4a3410996f3a385b8e04538Test
رقم الانضمام: edsdoj.23d8e746b4a3410996f3a385b8e04538
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:13194836
20726694
DOI:10.3390/cancers13194836