دورية أكاديمية

Comparative Evaluation of Radio Network Planning for Different 5G-NR Channel Models on Urban Macro Environments in Quito City

التفاصيل البيبلوغرافية
العنوان: Comparative Evaluation of Radio Network Planning for Different 5G-NR Channel Models on Urban Macro Environments in Quito City
المؤلفون: Valdemar Ramon Farre Guijarro, Jose David Vega Sanchez, Martha Cecilia Paredes Paredes, Felipe Grijalva Arevalo, Diana Pamela Moya Osorio
المصدر: IEEE Access, Vol 12, Pp 5708-5730 (2024)
بيانات النشر: IEEE, 2024.
سنة النشر: 2024
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: Multiple-input multiple-output (MIMO), 5G New Radio (NR), radio network planning, millimeter-wave (mmWave), wave propagation models, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: The 5th-Generation New Radio (5G-NR) network have been widely deployed around the world in the frequency range 1/range 2 bands. Once specific frequency bands within these ranges can vary across different countries and regions due to regulatory differences, it should be carried out radio network planning to evaluate the 5G coverage considering the particularities of different locations. In this regard, this paper performs a throughly analysis of the following methods for modeling wireless channel propagation in Quito, Ecuador: 3rd Generation Partnership Project, Knife Edge Diffraction (KED), ASTER and Dominant Path model (DPM). Specifically, we focus on KED, ASTER, and DPM for $3.5/28$ -GHz bands to determine the propagation models in three-Dimensional urban macro scenarios. In the radio network planning, the multiple-input multiple-output array antennas, $2\times 2/ 4\times 4$ configuration radiation patterns are deployed using WINPROP tool and $64\times 64$ array configuration with the ATOLL tool. 5G frequency specifications, path-loss, influence of diffraction, reflection, blocking, and fading between transmitter and receiver have been considered for scenarios of interest, such as dense urban and urban in Quito, by using fixed wireless access applications and Vehicular-to-Everything (V2X) communications. In addition, data rates, throughput, and the quality metrics of the received reference signal, i.e., the signal-to-noise plus interference ratio, the reference signal received quality, the reference signal received power, and the received signal strength indicator, are also assessed for each propagation model. Finally, we provide useful insights into propagation models and design usage rules for the bands mentioned in 5G networks for Quito city.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2169-3536
العلاقة: https://ieeexplore.ieee.org/document/10381695Test/; https://doaj.org/toc/2169-3536Test
DOI: 10.1109/ACCESS.2024.3350182
الوصول الحر: https://doaj.org/article/000d7873e5ab41069eaedcf5fb7a1815Test
رقم الانضمام: edsdoj.000d7873e5ab41069eaedcf5fb7a1815
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21693536
DOI:10.1109/ACCESS.2024.3350182