AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study

التفاصيل البيبلوغرافية
العنوان: AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study
المؤلفون: Quintero J.H., Gonzalez-Hernandez R., Ospina R., Marino A.
المساهمون: Quintero, J.H., Materiales Nanoestructurados y Biomodelación, Universidad de Medellín, Medellín, Colombia, Gonzalez-Hernandez, R., Grupo de Investigación en Física Aplicada, Universidad Del Norte, Barranquilla, Colombia, Ospina, R., Escuela de Física, Centro de Materiales y Nanociencia, Universidad Industrial de Santander, Bucaramanga, Colombia, Marino, A., Laboratorio de Superconductividad y Nuevos Materiales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
المصدر: Scopus
بيانات النشر: Institute of Physics Publishing
Facultad de Ciencias Básicas
سنة النشر: 2017
المجموعة: Universidad de Medellin: Repositorio Institucional
مصطلحات موضوعية: Computer Simulation, Crystal Structure, Nitrides, Point Defects, Solid Solutions, Superlattices, Atoms, Crystal atomic structure, Gold, Lattice theory, Nitrogen, Refractory metal compounds, Transition metals, Zinc sulfide, Density functional theory studies, Face-centered cubes (fcc), Interstitial nitrogen, Interstitial sites, Pseudopotential plane-wave method, Series transitions, Transition metal nitrides, Wurtzite structure, Density functional theory
الوصف: Researchers have been studying 4d and 5d Series Transition Metal Nitrides lately as a result of the experimental production of AuN, PtN, CuN. In this paper, we used the Density Functional Theory (DFT) implementing a pseudopotential plane-wave method to study the incorporation of nitrogen atoms in the face-centered cube (fcc) lattice of gold (Au). First, we took the fcc structure of gold, and gradually located the nitrogen atoms in tetrahedral (TH) and octahedral (OH) interstitial sites. AuN stabilized in: 2OH (30%), 4OH and 4TH (50%), 4OH - 2TH (close to the wurtzite structure) and 6TH (60%). This leads us to think that AuN behaves like a Transition Metal Nitride since the nitrogen atoms look for tetrahedral sites. © Published under licence by IOP Publishing Ltd.
نوع الوثيقة: conference object
وصف الملف: application/pdf
اللغة: English
تدمد: 17426588
العلاقة: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85022062627&doi=10.1088%2f1742-6596%2f850%2f1%2f012002&partnerID=40&md5=5812470d8966f71b42e9673e1de6cf95Test; Journal of Physics: Conference Series; Journal of Physics: Conference Series Volume 850, Issue 1, 13 June 2017; Al-Brithen, H., & Smith, A. R. (2000). Molecular beam epitaxial growth of atomically smooth scandium nitride films. Applied Physics Letters, 77(16), 2485-2487.; Alves, L., Hase, T. P. A., Hunt, M. R. C., Brieva, A. C., & Šiller, L. (2008). X-ray diffraction study of gold nitride films: Observation of a solid solution phase. Journal of Applied Physics, 104(11) doi:10.1063/1.3040717; Caricato, A. P., Fernàndez, M., Leggieri, G., Luches, A., Martino, M., Romano, F., . . . Meda, L. (2007). Reactive pulsed laser deposition of gold nitride thin films. Applied Surface Science, 253(19), 8037-8040. doi:10.1016/j.apsusc.2007.02.081; Devia, A., Benavides, V., Castillo, H. A., & Quintero, J. (2006). Effects of the substrate temperature in AuN thin films by means of x-ray diffraction. AIP Conference Proceedings, 875, 258-261. doi:10.1063/1.2405944; Devia, A., Castillo, H. A., Benavides, V. J., Arango, Y. C., & Quintero, J. H. (2008). Growth and characterization of AuN films through the pulsed arc technique. Materials Characterization, 59(2), 105-107. doi:10.1016/j.matchar.2006.10.023; Evans, R. C. (1964). An Introduction to Crystal Chemistry.; Giannozzi, P. (2009). J.Phys: Cond.Matt, 21(39); Hugh, O. (1996). Pierson Handbook of Refractory Carbides and Nitrides.; Kanoun, M. B., & Goumri-Said, S. (2007). Investigation of structural stability and electronic properties of CuN, AgN and AuN by first principles calculations. Physics Letters, Section A: General, Atomic and Solid State Physics, 362(1), 73-83. doi:10.1016/j.physleta.2006.09.100; Krishnamurthy, S., Montalti, M., Wardle, M. G., Shaw, M. J., Briddon, P. R., Svensson, K., . . . Šiller, L. (2004). Nitrogen ion irradiation of au(110): Photoemission spectroscopy and possible crystal structures of gold nitride. Physical Review B - Condensed Matter and Materials Physics, 70(4), 045414-1-045414-5. doi:10.1103/PhysRevB.70.045414; Laasonen, K., Pasquarello, A., Car, R., Lee, C., & Vanderbilt, D. (1993). Car-parrinello molecular dynamics with vanderbilt ultrasoft pseudopotentials. Physical Review B, 47(16), 10142-10153. doi:10.1103/PhysRevB.47.10142; Maruyama, T., & Morishita, T. (1996). Copper nitride and tin nitride thin films for write-once optical recording media. Applied Physics Letters, 69(7), 890-891. doi:10.1063/1.117978; Methfessel, M., & Paxton, A. T. (1989). High-precision sampling for brillouin-zone integration in metals. Physical Review B, 40(6), 3616-3621. doi:10.1103/PhysRevB.40.3616; Mohammed, S., Suleiman, H., & Joubert Daniel, P. (2013). Cond-Mat.Mtrl-Sci.; Monkhorst, H. J., & Pack, J. D. (1976). Special points for brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/PhysRevB.13.5188; Murnaghan, F. D. (1944). The compressibility of media under extreme pressures. Proc.Natl.Acad.Sci.U.S.A., 30, 244-247.; Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865; Quintero, J. H., Arango, P. J., Ospina, R., Mello, A., & Mariño, A. (2015). AuN films - structure and chemical binding. Surface and Interface Analysis, 47(6), 701-705. doi:10.1002/sia.5766; Quintero, J. H., Mariño, A., & Arango, P. J. (2013). Differences between thin films deposition systems in the production transition metal nitride. Journal of Physics: Conference Series, 466(1) doi:10.1088/1742-6596/466/1/012002; Quintero, J. H., Mariño, A., Šiller, L., Restrepo-Parra, E., & Caro-Lopera, F. J. (2017). Rocking curves of gold nitride species prepared by arc pulsed - physical assisted plasma vapor deposition. Surface and Coatings Technology, 309, 249-257. doi:10.1016/j.surfcoat.2016.11.081; Quintero, J. H., Ospina, R., Cárdenas, O. O., Alzate, G. I., & Devia, A. (2008). Phys.Scr, 131.; Quintero, J. H., Ospina, R., & Mello, A. (2016). Obtaining au thin films in atmosphere of reactive nitrogen through magnetron sputtering. Journal of Physics: Conference Series, 687(1) doi:10.1088/1742-6596/687/1/012006; Ranjan, V., Bellaiche, L., & Walter, E. J. (2003). Strained hexagonal ScN: A material with unusual structural and optical properties. Physical Review Letters, 90(25 I), 2576021-2576024.; Shanley, E. S., & Ennis, J. L. (1991). The chemistry and free energy of formation of silver nitride. Industrial and Engineering Chemistry Research, 30(11), 2503-2506. doi:10.1021/ie00059a023; Spyropoulos-Antonakakis, N., Sarantopoulou, E., Kollia, Z., Dražic, G., & Kobe, S. (2011). Schottky and charge memory effects in InN nanodomains. Applied Physics Letters, 99(15) doi:10.1063/1.3651327; Yu, R., & Zhang, X. F. (2005). Family of noble metal nitrides: First principles calculations of the elastic stability. Physical Review B - Condensed Matter and Materials Physics, 72(5) doi:10.1103/PhysRevB.72.054103; Yu, R., & Zhang, X. F. (2005). Platinum nitride with fluorite structure. Applied Physics Letters, 86(12), 1-3. doi:10.1063/1.1890466; Zerr, A., Miehe, G., & Riedel, R. (2003). Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure. Nature Materials, 2(3), 185-189. doi:10.1038/nmat836; Zhan, Q., Yu, R., He, L., Li, D., Nie, H., & Ong, C. (2003). Microstructural study on multilayer [FeTaN/TaN]5 films. Materials Letters, 57(24-25), 3904-3909. doi:10.1016/S0167-577X(03)00238-6; Zhan, Q., Yu, R., He, L. L., & Li, D. X. (2002). Microstructural characterization of fe-N thin films. Thin Solid Films, 411(2), 225-228. doi:10.1016/S0040-6090(02)00289-4; Zhao, E., Wang, J., Meng, J., & Wu, Z. (2010). Structural, mechanical and electronic properties of 4d transition metal mononitrides by first-principles. Computational Materials Science, 47(4), 1064-1071. doi:10.1016/j.commatsci.2009.12.011; Zhao, E., & Wu, Z. (2008). Electronic and mechanical properties of 5d transition metal mononitrides via first principles. Journal of Solid State Chemistry, 181(10), 2814-2827. doi:10.1016/j.jssc.2008.07.022; http://hdl.handle.net/11407/4279Test; reponame:Repositorio Institucional Universidad de Medellín; instname:Universidad de Medellín
DOI: 10.1088/1742-6596/850/1/012002
الإتاحة: https://doi.org/10.1088/1742-6596/850/1/012002Test
https://doi.org/10.1016/j.apsusc.2007.02.081Test
https://doi.org/10.1103/PhysRevB.70.045414Test
http://hdl.handle.net/11407/4279Test
حقوق: info:eu-repo/semantics/restrictedAccess
رقم الانضمام: edsbas.FF810E2F
قاعدة البيانات: BASE
الوصف
تدمد:17426588
DOI:10.1088/1742-6596/850/1/012002