دورية أكاديمية

A comprehensive theory for 1-D (an)elastic medium deformation due to plane-wave fluid pressure perturbation

التفاصيل البيبلوغرافية
العنوان: A comprehensive theory for 1-D (an)elastic medium deformation due to plane-wave fluid pressure perturbation
المؤلفون: Xu, Zongbo, Lognonné, Philippe
المساهمون: Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), ANR-19-CE31-0008,MAGIS,MArs Geophysical InSight(2019), ANR-21-CE01-0031,BRUIT-FM,Comprehension, prevention et utilisation du bruit sismologique en fond de mer(2021), ANR-18-IDEX-0001,Université de Paris,Université de Paris(2018)
المصدر: ISSN: 0956-540X.
بيانات النشر: HAL CCSD
Oxford University Press (OUP)
سنة النشر: 2024
مصطلحات موضوعية: Planetary seismology, Surface waves and free oscillations, Theoretical seismology, Wave propagation, Seismoacoustics, [SDU]Sciences of the Universe [physics]
الوصف: International audience ; Atmospheric and oceanic pressure perturbations deform the ground surface and the seafloor, respectively. This mechanical deformation, where the fluid perturbations propagate as plane waves, occurs not only on Earth but also on other planets/bodies with atmospheres, such as Mars, Titan and Venus. Studying this type of deformation improves our understanding of the mechanical interaction between the fluid layer (atmosphere/ocean) and the underlying solid planet/body, and aids investigation of subsurface structures. In this study, we utilize eigenfunction theory to unify existing theories for modelling this deformation and to comprehensively demonstrate possible scenarios of this deformation in homogeneous and 1-D elastic media, including static loading, air-coupled Rayleigh waves and leaky-mode surface waves. Our computations quantitatively reveal that the deformation amplitude generally decays with depth and that reducing seismic noise due to Martian atmosphere requires deploying seismometers at least 1 m beneath Martian surface. We also apply our theory to illustrate how this deformation and the corresponding air-to-solid energy conversion vary on different planetary bodies. Finally, we discuss how medium anelasticity and other factors affect this deformation.
نوع الوثيقة: article in journal/newspaper
اللغة: English
العلاقة: hal-04398870; https://hal.science/hal-04398870Test; https://hal.science/hal-04398870/documentTest; https://hal.science/hal-04398870/file/Xu2023_Compliance.pdfTest
DOI: 10.1093/gji/ggae005
الإتاحة: https://doi.org/10.1093/gji/ggae005Test
https://hal.science/hal-04398870Test
https://hal.science/hal-04398870/documentTest
https://hal.science/hal-04398870/file/Xu2023_Compliance.pdfTest
حقوق: http://creativecommons.org/licenses/byTest/ ; info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.FB5146BA
قاعدة البيانات: BASE