دورية أكاديمية

Evolution of energy, momentum, and spin parameter in dark matter flow and integral constants of motion

التفاصيل البيبلوغرافية
العنوان: Evolution of energy, momentum, and spin parameter in dark matter flow and integral constants of motion
المؤلفون: Xu, Zhijie (Jay)
سنة النشر: 2022
المجموعة: Zenodo
مصطلحات موضوعية: cosmology, dark matter, turbulence, simulation, astronomy, astrophysics, dark matter halo, correlation, statistical analysis, self-gravitating, collisionless, N body, halo energy, halo momentum, integral constant of motion, halo spin parameter
الوصف: Evolution of energy, momentum, and spin parameter in dark matter flow and integral constants of motion N-body equations of motion in comoving system and expanding background are reformulated in a transformed system with static background and fixed damping. The energy and momentum evolution in dark matter flow are rigorously formulated for both systems. The energy evolution in transformed system has a simple form that is identical to the damped harmonic oscillator. The cosmic energy equation can be easily derived in both systems. For entire N-body system, 1) combined with the two-body collapse model (TBCM), kinetic and potential energy increase linearly with time $t$ such that \(K_p=\varepsilon_ut\) and \(P_y=-7\varepsilon_ut/5\), where \(\varepsilon_u\) is a constant rate of energy cascade; 2) an effective gravitational potential exponent \(n_e=-10/7\ne-1\) (\(n_e=-1.38\) from simulation) can be identified due to surface energy of fast growing halos; 3) the radial momentum \(G\propto a^{3/2}\) and angular momentum \(H\propto a^{5/2}\), where \(a\) is the scale factor. On halo scale, 1) halo kinetic and potential energy can be modelled by two dimensionless constants \(\alpha_s^*\) and \(\beta_s^*\). Both constants are independent of time and halo mass; 2) both halo radial and angular momentum \(\propto a^{3/2}\) and can be modeled by two mass-dependent coefficients \(\tau_s^*\) and \(\eta_s^*\); 3) halo spin parameter is determined by \(\alpha_s^*\) and \(\eta_s^*\) and decreases with halo mass with derived values of 0.09 and 0.031 for small and large halos. Finally, the radial and angular momentum are closely related to the integral constants of motion \(I_m\), i.e. the integral of velocity correlation or the \(m\)th derivative of energy spectrum at long wavelength limit. On large scale, angular momentum is negligible, \(I_2\)=0 reflects the conservation of linear momentum, while \(I_4\) reflects the fluctuation of radial momentum \(G\). On halo scale, \(I_4\) is determined by both momentum that are comparable ...
نوع الوثيقة: article in journal/newspaper
اللغة: English
العلاقة: https://zenodo.org/record/6640322Test; https://doi.org/10.48550/arXiv.2202.04054Test; oai:zenodo.org:6640322
DOI: 10.48550/arXiv.2202.04054
الإتاحة: https://doi.org/10.48550/arXiv.2202.04054Test
https://doi.org/10.5281/zenodo.6569898Test
https://doi.org/10.5281/zenodo.6541230Test
https://doi.org/10.5281/zenodo.6586212Test
https://doi.org/10.5281/zenodo.6569901Test
https://doi.org/10.48550/arXiv.2109.12244Test
https://doi.org/10.48550/arXiv.2110.03126Test
https://doi.org/10.48550/arXiv.2110.05784Test
https://doi.org/10.48550/arXiv.2110.09676Test
https://doi.org/10.48550/arXiv.2110.13885Test
حقوق: info:eu-repo/semantics/openAccess ; https://creativecommons.org/licenses/by/4.0/legalcodeTest
رقم الانضمام: edsbas.EEC3CD05
قاعدة البيانات: BASE