دورية أكاديمية

The relationship between spinal alignment and activity of paravertebral muscle during gait in patients with adult spinal deformity: a retrospective study

التفاصيل البيبلوغرافية
العنوان: The relationship between spinal alignment and activity of paravertebral muscle during gait in patients with adult spinal deformity: a retrospective study
المؤلفون: Asada, Tomoyuki, Miura, Kousei, Kadone, Hideki, Sakashita, Kotaro, Funayama, Toru, Takahashi, Hiroshi, Noguchi, Hiroshi, Sato, Kosuke, Eto, Fumihiko, Gamada, Hisanori, Inomata, Kento, Koda, Masao, Yamazaki, Masashi
المصدر: BMC Musculoskeletal Disorders ; volume 24, issue 1 ; ISSN 1471-2474
بيانات النشر: Springer Science and Business Media LLC
سنة النشر: 2023
مصطلحات موضوعية: Orthopedics and Sports Medicine, Rheumatology
الوصف: Background Spinal alignment in patients with adult spinal deformity (ASD) changes between rest and during gait. However, it remains unclear at which point the compensated walking posture breaks down and how muscles respond. This study used time-synchronized electromyography (EMG) to investigate the relationship between dynamic spinal alignment and muscle activity during maximum walking duration to reveal compensation mechanisms. Methods This study collected preoperative three-dimensional gait analysis data from patients who were candidates for corrective surgery for ASD from April 2015 to May 2019. We preoperatively obtained dynamic spinal alignment parameters from initiation to cessation of gait using a motion capture system with time-synchronized surface integrated EMG (iEMG). We compared chronological changes in dynamic spinal alignment parameters and iEMG values 1) immediately after gait initiation (first trial), 2) half of the distance walked (half trial), and 3) immediately before cessation (last trial). Results This study included 26 patients (22 women, four men) with ASD. Spinal sagittal vertical axis distance during gait (SpSVA) increased over time (first vs. half vs. last, 172.4 ± 74.8 mm vs. 179.9 ± 76.8 mm vs. 201.6 ± 83.1 mm; P < 0.001). Cervical paravertebral muscle (PVM) and gluteus maximus activity significantly increased ( P < 0.01), but thoracic and lumbar PVM activity did not change. Dynamic spinal alignment showed significant correlation with all muscle activity (cervical PVM, r = 0.41–0.54; thoracic PVM, r = 0.49–0.66; gluteus maximus, r = 0.54–0.69; quadriceps, r = 0.46–0.55) except lumbar PVM activity. Conclusion Spinal balance exacerbation occurred continuously in patients with ASD over maximum walking distance and not at specific points. To maintain horizontal gaze, cervical PVM and gluteus maximus were activated to compensate for a dynamic spinal alignment change. All muscle activities, except lumbar PVM, increased to compensate for the spinal malalignment over time.
نوع الوثيقة: article in journal/newspaper
اللغة: English
DOI: 10.1186/s12891-022-06121-y
DOI: 10.1186/s12891-022-06121-y.pdf
DOI: 10.1186/s12891-022-06121-y/fulltext.html
الإتاحة: https://doi.org/10.1186/s12891-022-06121-yTest
حقوق: https://creativecommons.org/licenses/by/4.0Test ; https://creativecommons.org/licenses/by/4.0Test
رقم الانضمام: edsbas.E8DBD934
قاعدة البيانات: BASE