دورية أكاديمية

Accurate Patient-Specific Machine Learning Models Of Glioblastoma Invasion Using Transfer Learning

التفاصيل البيبلوغرافية
العنوان: Accurate Patient-Specific Machine Learning Models Of Glioblastoma Invasion Using Transfer Learning
المؤلفون: Hu, L. S., Yoon, H., Eschbacher, J. M., Baxter, L. C., Dueck, A. C., Nespodzany, A., Smith, K. A., Nakaji, P., Xu, Y., Wang, L., Karis, J. P., Hawkins-Daarud, A. J., Singleton, K. W., Jackson, P. R., Anderies, B. J., Bendok, B. R., Zimmerman, R. S., Quarles, C., Porter-Umphrey, A. B., Mrugala, M. M., Sharma, A., Hoxworth, J. M., Sattur, M. G., Sanai, N., Koulemberis, P. E., Krishna, C., Mitchell, J. R., Wu, T., Tran, N. L., Swanson, K. R., Li, J.
المصدر: Translational Neuroscience
بيانات النشر: Barrow - St. Joseph's Scholarly Commons
سنة النشر: 2019
مصطلحات موضوعية: stat, edu
الوصف: BACKGROUND AND PURPOSE: MR imaging–based modeling of tumor cell density can substantially improve targeted treatment of glioblastoma. Unfortunately, interpatient variability limits the predictive ability of many modeling approaches. We present a transfer learning method that generates individualized patient models, grounded in the wealth of population data, while also detecting and adjusting for interpatient variabilities based on each patient’s own histologic data. MATERIALS AND METHODS: We recruited patients with primary glioblastoma undergoing image-guided biopsies and preoperative imaging, including contrast-enhanced MR imaging, dynamic susceptibility contrast MR imaging, and diffusion tensor imaging. We calculated relative cerebral blood volume from DSC-MR imaging and mean diffusivity and fractional anisotropy from DTI. Following image coregistration, we assessed tumor cell density for each biopsy and identified corresponding localized MR imaging measurements. We then explored a range of univariate and multivariate predictive models of tumor cell density based on MR imaging measurements in a generalized one-model-fits-all approach. We then implemented both univariate and multivariate individualized transfer learning predictive models, which harness the available population-level data but allow individual variability in their predictions. Finally, we compared Pearson correlation coefficients and mean absolute error between the individualized transfer learning and generalized one-model-fits-all models. RESULTS: Tumor cell density significantly correlated with relative CBV (r 0.33, P .001), and T1-weighted postcontrast (r 0.36, P .001) on univariate analysis after correcting for multiple comparisons. With single-variable modeling (using relative CBV), transfer learning increased predictive performance (r 0.53, mean absolute error 15.19%) compared with one-model-fits-all (r 0.27, mean absolute error 17.79%). With multivariate modeling, transfer learning further improved performance (r 0.88, mean absolute ...
نوع الوثيقة: text
اللغة: unknown
العلاقة: https://scholar.barrowneuro.org/neurobiology/347Test
الإتاحة: https://scholar.barrowneuro.org/neurobiology/347Test
حقوق: undefined
رقم الانضمام: edsbas.E2C919E6
قاعدة البيانات: BASE