دورية أكاديمية

Boltzmann Switching MoS 2 Metal–Semiconductor Field‐Effect Transistors Enabled by Monolithic‐Oxide‐Gapped Metal Gates at the Schottky–Mott Limit

التفاصيل البيبلوغرافية
العنوان: Boltzmann Switching MoS 2 Metal–Semiconductor Field‐Effect Transistors Enabled by Monolithic‐Oxide‐Gapped Metal Gates at the Schottky–Mott Limit
المؤلفون: Kim, Yeon Ho, Jiang, Wei, Lee, Donghun, Moon, Donghoon, Choi, Hyun‐Young, Shin, June‐Chul, Jeong, Yeonsu, Kim, Jong Chan, Lee, Jaeho, Huh, Woong, Han, Chang Yong, So, Jae‐Pil, Kim, Tae Soo, Kim, Seong Been, Koo, Hyun Cheol, Wang, Gunuk, Kang, Kibum, Park, Hong‐Gyu, Jeong, Hu Young, Im, Seongil, Lee, Gwan‐Hyoung, Low, Tony, Lee, Chul‐Ho
المساهمون: National Research Foundation of Korea, Seoul National University
المصدر: Advanced Materials ; ISSN 0935-9648 1521-4095
بيانات النشر: Wiley
سنة النشر: 2024
المجموعة: Wiley Online Library (Open Access Articles via Crossref)
الوصف: A gate stack that facilitates a high‐quality interface and tight electrostatic control is crucial for realizing high‐performance and low‐power field‐effect transistors (FETs). However, when constructing conventional metal‐oxide‐semiconductor structures with two‐dimensional (2D) transition metal dichalcogenide channels, achieving these requirements becomes challenging due to inherent difficulties in obtaining high‐quality gate dielectrics through native oxidation or film deposition. Here, a gate‐dielectric‐less device architecture of van der Waals Schottky gated metal–semiconductor FETs (vdW‐SG MESFETs) using a molybdenum disulfide (MoS 2 ) channel and surface‐oxidized metal gates such as nickel and copper is reported. Benefiting from the strong SG coupling, these MESFETs operate at remarkably low gate voltages, <0.5 V. Notably, they also exhibit Boltzmann‐limited switching behavior featured by a subthreshold swing of ≈60 mV dec −1 and negligible hysteresis. These ideal FET characteristics are attributed to the formation of a Fermi‐level ( E F ) pinning‐free gate stack at the Schottky–Mott limit. Furthermore, authors experimentally and theoretically confirm that E F depinning can be achieved by suppressing both metal‐induced and disorder‐induced gap states at the interface between the monolithic‐oxide‐gapped metal gate and the MoS 2 channel. This work paves a new route for designing high‐performance and energy‐efficient 2D electronics.
نوع الوثيقة: article in journal/newspaper
اللغة: English
DOI: 10.1002/adma.202314274
الإتاحة: https://doi.org/10.1002/adma.202314274Test
حقوق: http://creativecommons.org/licenses/by-nc/4.0Test/
رقم الانضمام: edsbas.DFC78202
قاعدة البيانات: BASE