رسالة جامعية

Polariton-assisted long-distance energy transfer in two-dimensional layered materials ; Polaritoniavusteinen pitkän kantaman energiansiirto kaksiulotteisissa puolijohteissa

التفاصيل البيبلوغرافية
العنوان: Polariton-assisted long-distance energy transfer in two-dimensional layered materials ; Polaritoniavusteinen pitkän kantaman energiansiirto kaksiulotteisissa puolijohteissa
المؤلفون: Pajunpää, Tuomas
المساهمون: Fernandez, Henry, Sähkötekniikan korkeakoulu, Sun, Zhipei, Aalto-yliopisto, Aalto University
سنة النشر: 2022
المجموعة: Aalto University Publication Archive (Aaltodoc) / Aalto-yliopiston julkaisuarkistoa
مصطلحات موضوعية: non-radiative energy transfer, strong coupling, microcavity, tungsten disulfide, molybdenum disulfide
الوصف: Non-radiative energy transfer (NRET) is a physical process describing electromagnetic energy exchange between two spatially separated light-sensitive materials. NRET occurs when a donor material transfers its excitation energy non-radiatively to an acceptor material in a direct interaction through a specific medium instead of photon radiation. NRET is faster and more efficient than radiative energy transfer, resulting in many potential applications in optoelectronics and quantum sciences. One important limitation of NRET is the short distance it operates. The efficiency of NRET depends on the donor-to-acceptor separation distance with an inverse 6th-power law. Thus, NRET is usually limited to distances of less than 10 nm. Recently, the distance of NRET has been extended up to 2 μm in strong coupling optical microcavities by coupling excitons in organic semiconductors or quantum dots with common polariton modes, and using the hybrid polariton states as a medium for NRET. The goal of this thesis is to achieve comparable energy transfer distance by using transition-metal dichalcogenides in a strong coupling microcavity. For this purpose, the thesis will design a tunable microcavity containing spatially separated few-layer WS2 and MoS2 flakes and confirm the NRET from WS2 excitons to MoS2 excitons at a distance comparable to state-of-the-art devices. The formation of polariton states is confirmed by observing an avoided crossing characteristic when the cavity transmission spectra are measured as a function of the cavity length. The avoided crossing is theoretically described by a three-level coupling matrix with a non-Hermitian Hamiltonian formalism. An excellent agreement between the theoretical model and experimental results suggests that the system was in the strong coupling regime, allowing for NRET to occur at a distance of 1 μm. The result will expand the long-distance NRET to TMDCs, which are prominent platform for practical devices. ; Säteilemätön energiansiirto kuvaa fysikaalista prosessia kahden erillään ...
نوع الوثيقة: master thesis
اللغة: English
العلاقة: https://aaltodoc.aalto.fi/handle/123456789/117404Test; URN:NBN:fi:aalto-202210236190
الإتاحة: https://aaltodoc.aalto.fi/handle/123456789/117404Test
رقم الانضمام: edsbas.DA7C2D42
قاعدة البيانات: BASE