دورية أكاديمية

Structural study of spirolide marine toxins by mass spectrometry Part I. Fragmentation pathways of 13-desmethyl spirolide C by collision-induced dissociation and infrared multiphoton

التفاصيل البيبلوغرافية
العنوان: Structural study of spirolide marine toxins by mass spectrometry Part I. Fragmentation pathways of 13-desmethyl spirolide C by collision-induced dissociation and infrared multiphoton
المؤلفون: Sleno, Lekha, Windust, Anthony (Tony), Volmer, Dietrich A.
بيانات النشر: Springer International Publishing AG
سنة النشر: 2003
المجموعة: National Research Council Canada: NRC Publications Archive
مصطلحات موضوعية: Triple-quadrupole mass spectrometry, Quadrupole-linear ion-trap mass spectrometry, infrared multiphoton dissociation mass spectrometry, collision-induced dissociation mass spectrometry, Fourier-transform ion cyclotron resonance mass spectrometry, MS fragmentation pathways, charge-remote fragmentation, phytoplankton, Alexandrium ostenfeldii, spirolide marine toxins, 13-Desmethyl spirolide C
الوصف: A novel group of toxins, the spirolides, has been investigated by several mass spectrometric (MS) methods to enable structure elucidation and metabolite identification. These macrocyclic compounds, produced by the dinoflagellate Alexandrium ostenfeldii, are a new class of marine phycotoxin with characteristic spiro-linked tricyclic ether and imine moieties. A crude phytoplankton extract has been shown to contain known spirolides and several unknown compounds, present at low yet significant levels. This study has focused on mass spectrometric characterization of the main component of this extract, 13-desmethyl spirolide C. Collision-induced dissociation (CID) spectra were collected on triple-quadrupole and quadrupole linear ion-trap instruments. High-resolution Fourier-transform ion cyclotron resonance MS data revealed the accurate masses of the protonated molecule and the product ions formed by infrared multiphoton dissociation. A fragmentation scheme for this toxin has been proposed to explain the formation of the collision-induced fragments. Charge-remote fragmentations dominate the CID spectra, because there is only one predominantly basic site in this molecule, and prove to be structurally informative. Extensive MS characterization of 13-desmethyl spirolide C will undoubtedly be useful in the characterization of known and unknown spirolides and other related compounds. ; Peer reviewed: Yes ; NRC publication: Yes
نوع الوثيقة: article in journal/newspaper
وصف الملف: text
اللغة: English
العلاقة: Analytical and Bioanalytical Chemistry, Volume: 378, Issue: 4, Publication date: 2003-11-28, Pages: 969–976; nrc-imb_id:NRC-IMB-42397
DOI: 10.1007/s00216-003-2297-z
الإتاحة: https://doi.org/10.1007/s00216-003-2297-zTest
https://nrc-publications.canada.ca/eng/view/object/?id=2136b1d0-8f70-44da-ba8b-bba78e7a944bTest
https://nrc-publications.canada.ca/fra/voir/objet/?id=2136b1d0-8f70-44da-ba8b-bba78e7a944bTest
رقم الانضمام: edsbas.D3DEDD5E
قاعدة البيانات: BASE