دورية أكاديمية

Exospheric Na distributions along the Mercury orbit with the THEMIS telescope

التفاصيل البيبلوغرافية
العنوان: Exospheric Na distributions along the Mercury orbit with the THEMIS telescope
المؤلفون: A. Aronica, Elisabetta De Angelis, Anna Milillo, N. Vertolli, Stavro Ivanovski, Raffaella Noschese, Christina Plainaki, Roberto Sordini, Rosanna Rispoli, Stefano Orsini, V. Mangano, Alessandro Ippolito, Stefano Massetti, Adrian Kazakov, Alessandro Mura, Tommaso Alberti
سنة النشر: 2021
المجموعة: Istituto Nazionale di Fisica Nucleare (INFN): Open Access Repository
مصطلحات موضوعية: NEANIAS Space Research Community, Space and Planetary Science, Astronomy and Astrophysics, European Union's Horizon 2020
الوصف: The Na exosphere of Mercury is characterized by the variability of the emission lines intensity and of its distribution in time scales from less than one hour to seasonal variations. While the faster variations, accounting for about 10–20% of fluctuations are probably linked to the planetary response to solar wind and Interplanetary Magnetic Field variability, the seasonal variations (up to about 80%) should be explained by complex mechanisms involving different surface release processes, loss, source and migrations of the exospheric Na atoms. Eventually, a Na annual cycle can be identified. In the past, ground-based observations and equatorial density from MESSENGER data have been analyzed. In this study, for a more extensive investigation of the exospheric Na features, we have studied the local time and latitudinal distributions of the exospheric Na column density as a function of the True Anomaly Angle (TAA) of Mercury by means of the extended dataset of images, collected from 2009 to 2013, by the THEMIS solar telescope. Our results show that the THEMIS images, in agreement with previous results, registered a strong general increase in sodium abundance at aphelion and a dawn ward emission predominance with respect to dusk ward and subsolar region between 90° and 150° TAA. This behavior can be explained by desorption of a sodium surface reservoir consisting of sodium that is pushed anti-sunward and condenses preferentially in the coldest regions. Our analyses show s a predominance of subsolar line-of-sight column density along the rest of Mercury's orbit. An unexpected relationship between Northward or Southward peak emission and both TAA and local time is also shown by our analysis. This result seems to contradict previous results obtained from different data sets and it is not easily explained, thus it requires further investigations.
نوع الوثيقة: article in journal/newspaper
اللغة: English
العلاقة: info:eu-repo/grantAgreement/EC/H2020/824135/; url:https://www.openaccessrepository.it/communities/itmirrorTest; https://www.openaccessrepository.it/record/85129Test
DOI: 10.1016/j.icarus.2020.114179
الإتاحة: https://doi.org/10.1016/j.icarus.2020.114179Test
https://www.openaccessrepository.it/record/85129Test
حقوق: info:eu-repo/semantics/openAccess ; https://creativecommons.org/licenses/by-nc-nd/4.0Test/
رقم الانضمام: edsbas.C605F5B8
قاعدة البيانات: BASE