دورية أكاديمية

Up-Net: a generic deep learning-based time stepper for parameterized spatio-temporal dynamics

التفاصيل البيبلوغرافية
العنوان: Up-Net: a generic deep learning-based time stepper for parameterized spatio-temporal dynamics
المؤلفون: Stender, Merten, Ohlsen, Jakob, Geisler, Hendrik, Chabchoub, Amin, Hoffmann, Norbert, Schlaefer, Alexander
المصدر: Computational Mechanics 71 (2023), Nr. 6 ; Computational Mechanics
بيانات النشر: Berlin
Springer
سنة النشر: 2023
المجموعة: Institutional Repository of Leibniz Universität Hannover
مصطلحات موضوعية: Machine learning, Partial differential equations, Representation learning, Sensor data fusion, Time integration, Wave propagation, ddc:530, ddc:004
الوصف: In the age of big data availability, data-driven techniques have been proposed recently to compute the time evolution of spatio-temporal dynamics. Depending on the required a priori knowledge about the underlying processes, a spectrum of black-box end-to-end learning approaches, physics-informed neural networks, and data-informed discrepancy modeling approaches can be identified. In this work, we propose a purely data-driven approach that uses fully convolutional neural networks to learn spatio-temporal dynamics directly from parameterized datasets of linear spatio-temporal processes. The parameterization allows for data fusion of field quantities, domain shapes, and boundary conditions in the proposed Up-Net architecture. Multi-domain Up-Net models, therefore, can generalize to different scenes, initial conditions, domain shapes, and domain sizes without requiring re-training or physical priors. Numerical experiments conducted on a universal and two-dimensional wave equation and the transient heat equation for validation purposes show that the proposed Up-Net outperforms classical U-Net and conventional encoder–decoder architectures of the same complexity. Owing to the scene parameterization, the Up-Net models learn to predict refraction and reflections arising from domain inhomogeneities and boundaries. Generalization properties of the model outside the physical training parameter distributions and for unseen domain shapes are analyzed. The deep learning flow map models are employed for long-term predictions in a recursive time-stepping scheme, indicating the potential for data-driven forecasting tasks. This work is accompanied by an open-sourced code.
نوع الوثيقة: article in journal/newspaper
اللغة: English
تدمد: 0178-7675
العلاقة: ESSN:1432-0924; http://dx.doi.org/10.15488/14757Test; https://www.repo.uni-hannover.de/handle/123456789/14876Test
DOI: 10.15488/14757
الإتاحة: https://doi.org/10.15488/14757Test
https://doi.org/10.1007/s00466-023-02295-xTest
https://www.repo.uni-hannover.de/handle/123456789/14876Test
حقوق: CC BY 4.0 Unported ; https://creativecommons.org/licenses/by/4.0Test ; frei zugänglich
رقم الانضمام: edsbas.BF3B2D6D
قاعدة البيانات: BASE