دورية أكاديمية

Decellularized vascularized bone grafts: A preliminary in vitro porcine model for bioengineered transplantable bone shafts

التفاصيل البيبلوغرافية
العنوان: Decellularized vascularized bone grafts: A preliminary in vitro porcine model for bioengineered transplantable bone shafts
المؤلفون: Rougier, Guillaume, Maistriaux, Louis, Fievé, Lies, Xhema, Daela, Evrard, Robin, Manon, Julie, Olszewski, Raphael, Szmytka, Fabien, Thurieau, Nicolas, Boisson, Jean, Kadlub, Natacha, Gianello, Pierre, Behets, Catherine, Lengelé, Benoît
المصدر: Frontiers in Bioengineering and Biotechnology ; volume 10 ; ISSN 2296-4185
بيانات النشر: Frontiers Media SA
سنة النشر: 2023
المجموعة: Frontiers (Publisher - via CrossRef)
مصطلحات موضوعية: Biomedical Engineering, Histology, Bioengineering, Biotechnology
الوصف: Introduction : Durable reconstruction of critical size bone defects is still a surgical challenge despite the availability of numerous autologous and substitute bone options. In this paper, we have investigated the possibility of creating a living bone allograft, using the perfusion/decellularization/recellularization (PDR) technique, which was applied to an original model of vascularized porcine bone graft. Materials and Methods : 11 porcine bone forelimbs, including radius and ulna, were harvested along with their vasculature including the interosseous artery and then decellularized using a sequential detergent perfusion protocol. Cellular clearance, vasculature, extracellular matrix (ECM), and preservation of biomechanical properties were evaluated. The cytocompatibility and in vitro osteoinductive potential of acellular extracellular matrix were studied by static seeding of NIH-3T3 cells and porcine adipose mesenchymal stem cells (pAMSC), respectively. Results : The vascularized bone grafts were successfully decellularized, with an excellent preservation of the 3D morphology and ECM microarchitecture. Measurements of DNA and ECM components revealed complete cellular clearance and preservation of ECM’s major proteins. Bone mineral density (BMD) acquisitions revealed a slight, yet non-significant, decrease after decellularization, while biomechanical testing was unmodified. Cone beam computed tomography (CBCT) acquisitions after vascular injection of barium sulphate confirmed the preservation of the vascular network throughout the whole graft. The non-toxicity of the scaffold was proven by the very low amount of residual sodium dodecyl sulfate (SDS) in the ECM and confirmed by the high live/dead ratio of fibroblasts seeded on periosteum and bone ECM-grafts after 3, 7, and 16 days of culture. Moreover, cell proliferation tests showed a significant multiplication of seeded cell populations at the same endpoints. Lastly, the differentiation study using pAMSC confirmed the ECM graft’s potential to promote ...
نوع الوثيقة: article in journal/newspaper
اللغة: unknown
DOI: 10.3389/fbioe.2022.1003861
DOI: 10.3389/fbioe.2022.1003861/full
الإتاحة: https://doi.org/10.3389/fbioe.2022.1003861Test
حقوق: https://creativecommons.org/licenses/by/4.0Test/
رقم الانضمام: edsbas.B69061E1
قاعدة البيانات: BASE