دورية أكاديمية

Mechanically Stable Ultrathin Layered Graphene Nanocomposites Alleviate Residual Interfacial Stresses: Implications for Nanoelectromechanical Systems

التفاصيل البيبلوغرافية
العنوان: Mechanically Stable Ultrathin Layered Graphene Nanocomposites Alleviate Residual Interfacial Stresses: Implications for Nanoelectromechanical Systems
المؤلفون: Vassaux, Maxime, Müller, Werner, Suter, James, Vijayaraghavan, Aravind, Coveney, Peter
المساهمون: Department of Chemistry UCL, London, University College of London London (UCL), Institut de Physique de Rennes (IPR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), University of Manchester Manchester
المصدر: ISSN: 2574-0970 ; ACS Applied Nano Materials ; https://hal.science/hal-03899666Test ; ACS Applied Nano Materials, 2022, ⟨10.1021/acsanm.2c03955⟩.
بيانات النشر: HAL CCSD
American Chemical Society
سنة النشر: 2022
المجموعة: Université de Rennes 1: Publications scientifiques (HAL)
مصطلحات موضوعية: electromechanical systems, ultrasonic transducers, graphene nanocomposite, molecular dynamics, interfacial stress, pressure sensors, polymer deposition, [PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]
الوصف: International audience ; Advanced nanoelectromechanical systems made from polymer dielectrics deposited onto 2d-nanomaterials such as graphene are increasingly popular as pressure and touch sensors, resonant sensors, and capacitive micromachined ultrasound transducers (CMUTs). 1 However, durability and accuracy of layered nanocomposites depends on the mechanical stability of the interface between polymer and graphene layers. Here we used molecular dynamics computer simulations to investigate the interface between a sheet of graphene and a layer of parylene-C thermoplastic polymer during large numbers of high-frequency (MHz) cycles of bending relevant to the operating regime. We find that important interfacial sliding occurs almost immediately in usage conditions, resulting in more than 2% expansion of the membrane, a detrimental mechanism which requires repeated calibration to maintain CMUTs accuracy. This irreversible mechanism is caused by relaxation of residual internal stresses in the nanocomposite bi-layer, leading to the emergence of self-equilibrated tension in the polymer and compression in the graphene. It arises as a result of deposition-polymerization processing conditions. Our findings demonstrate the need for particular care to be exercised in overcoming initial expansion. The selection of appropriate materials chemistry including low electrostatic interactions will also be key to their successful application as durable and reliable devices.
نوع الوثيقة: article in journal/newspaper
اللغة: English
العلاقة: hal-03899666; https://hal.science/hal-03899666Test; https://hal.science/hal-03899666/documentTest; https://hal.science/hal-03899666/file/_acs_an__mechanically_stable_ultra_thin_layered_graphene_nanocomposites_alleviate_residual_interfacial_stresses.pdfTest
DOI: 10.1021/acsanm.2c03955
الإتاحة: https://doi.org/10.1021/acsanm.2c03955Test
https://hal.science/hal-03899666Test
https://hal.science/hal-03899666/documentTest
https://hal.science/hal-03899666/file/_acs_an__mechanically_stable_ultra_thin_layered_graphene_nanocomposites_alleviate_residual_interfacial_stresses.pdfTest
حقوق: info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.B1F152B6
قاعدة البيانات: BASE