單分子脂質膜在磷脂水解酵素A2水解過程中之組成分析 ; Analysis of lipid monolayer components during Phospholipase A2 hydrolysis

التفاصيل البيبلوغرافية
العنوان: 單分子脂質膜在磷脂水解酵素A2水解過程中之組成分析 ; Analysis of lipid monolayer components during Phospholipase A2 hydrolysis
المؤلفون: 邱靜儀
المساهمون: 吳文桂
سنة النشر: 2006
المجموعة: National Tsing Hua University Institutional Repository (NTHUR)
مصطلحات موضوعية: 磷脂水解酵素A2, 血小板活化因子, 花生四烯酸, 類廿碳酸, 前列腺素類, Phospholipase A2, platelet-activating factor, arachidonic acid, eicosanoids, prostanoids
الوقت: 46
الوصف: 碩士 ; 國立清華大學 ; 通訊工程研究所 ; GH000934250 ; 磷脂水解酵素A2催化水解磷脂質的 sn-2 位置,並且釋放脂肪酸與脫脂酸磷脂質。這些水解產物為重要的二級訊息傅遞者,且與免疫、發炎和生物毒性相關。在本論文中利用霍式轉換紅外線光譜與單分子薄膜技術,來探討在台灣眼鏡蛇毒素中之磷脂水解酵素A2在水解單分子脂質膜時其表面壓力或是表面積的下降之機制。我們發現單分子脂質膜的水解產物脂肪酸離開脂質膜表面是主要造成表面壓力與面積值下降的主因,且脂肪酸離開脂質膜之現象必須在有磷脂水解酵素A2存在下才會發生。此攜帶脂肪酸離開脂質膜的新發現功能,需要在有鈣離子的幫助才能進行。此外,蜜蜂毒素及東非眼鏡蛇蛇毒中之磷脂水解酵素A2也具有此攜帶脂肪酸離開中性脂質膜之功能。而東非眼鏡蛇蛇毒中之磷脂水解酵素A2在水解負電性的脂質膜時,其表面壓力的下降機制似乎是傾向攜帶脫脂酸磷脂質離開脂質膜而非脂肪酸。此不同磷脂水解酵素A2在水解不同電性脂質膜後具攜帶脂肪酸或是脫脂酸磷脂質之特異性,相信可以為磷脂水解酵素A2在毒物、生理及藥理學上之功能多出了一新的研究方向。 ; The phospholipase A2 (PLA2) catalyze specially the hydrolysis of the center(sn-2) ester bond of substrate phospholipids. The hydrolysis products of the PLA2 reaction are free fatty acid and lysophospholipid. The fatty acids released by PLA2, such as arachidonic acid (AA) and oleic acid (OA), can be important as stores of energy, but more importantly AA can also function as a second messenger and as the precursor of eicosanoids, which are potent mediators of inflammation and signal transduction. In this thesis, Fourier transform infrared and Langmuir monolayer are utilized to explore the processes of surface pressure and area decrease of lipid monolayer during PLA2 hydrolysis. Our study showed that PLA2 not only hydrolyzed phospholipid but also carried transported free fatty acid away from membrane interface. The free fatty acid transport phenomenum require calcium ion but is fatty acid chain length independent. Naja nigricolius PLA2 decreased surface area of DMPG monolayer but it cannot transport free fatty acid to the subphase. It implied that Naja nigricolius PLA2 transported Lyso PG instead of free fatty acid chain in negative charge lipid membrane. The aforementioned difference renders new potential research of PLA2 in toxic, physical and pharmacology.
نوع الوثيقة: other/unknown material
وصف الملف: 155 bytes; text/html
اللغة: Chinese
العلاقة: 1. Hodges, S.J., Agbaji, A.S., Harvey, A.L. and Hider, R.C. (1987) Cobra cardiotoxins. Purification, effects on skeletal muscle and structure/activity relationships. Eur. J. Biochem. 165, 373-383. 2. Tzeng, W.F. and Chen, Y.H. (1988) Suppression of snake-venom cardiotoxin-induced cardiomyocyte degeneration by blockage of Ca2+ influx or inhibition of non-lysosomal proteinases. Biochem. J. 256, 89-95. 3. Zusman, N., Miklas, T.M., Graves, T., Dambach, G.E. and Hudson, R.A. (1984) On the interaction of cobra venom protein cardiotoxins with erythrocytes. Biochem. Biophys. Res. Commun. 124, 629-636. 4. Grainger, D.W., Reichert, A., Ringsdorf, H., Salesse, C., Davies, D.E. and Lloyd, J.B. (1990) Biochim. Biophys. Acta 1022, 146-154. 5. Jain, M.K., Ranadive, G., Yu, B.Z. and Verheij, H.M. (1991) Interfacial catalysis by phospholipase A2: monomeric enzyme is fully catalytically active at the bilayer interface. Biochemistry 30, 7330-7340. 6. Mirsky, V.M. (1994) Effect of the lipid hydrolysis products on the phospholipase A2 action towards lipid monolayer. Chem. Phys. Lipid 70, 75-81. 7. Stahelin, R.V. and Cho W. (2001) Differential roles of ionic, aliphatic, and aromatic residues in membrane-protein interactions: a surface plasmon resonance study on phospholipases A2. Biochemistry 40, 4672-4678. 8. Sumandea, M., Das, S., Sumandea, C. and Cho, W. (1999) Roles of aromatic residues in high interfacial activity of Naja naja atra phospholipase A2. Biochemistry 38, 16290-16297. 9. Hanahan, D.J. (1986) Platelet activating factor: a biologically active phosphoglyceride. Annu. Rev. Biochem. 55, 483-509. 10. Lambeau, G. and Lazdunski, M. (1999) Receptors for a growing family of secreted phospholipases A2. Trends. Pharmaco.l Sci. 20, 162-170. 11. F.F. Davidson, E.A. Dennis, (1990)J. Mol. Evol. 31, 228- 238. 12. R.L. Heinrikson, E.T. Krueger, P.S. Keim, (1977) J. Biol. Chem.252, 4913-4921. 13. M.J. Dufton, R.C. Hider, Eur. J. (1983)Biochem. 137, 545- 551. 14. David A. Six, Edward A. (2000) Dennis The expanding superfamily of phospholipa Biochimica et Biophysica Acta 1488, 1-19 15. Zimmerberg J, Chernomordik LV. (2005) Neuroscience. Synaptic membranes bend to the will of a neurotoxin.Science. 310, 1626-1627. 16. Pan, F.M., Chang, W.C. and Chiou, S.H. (1994) cDNA and protein sequences coding for the precursor of phospholipase A2 from Taiwan cobra, Naja naja atra. Biochem. Mol. Biol. Int. 33, 187-194. 17. Hanahan, D.J.(1986) Platelet activating factor: a biologically active phosphoglyceride. Annu. Rev. Biochem. 55, 483-509. 18. Lambeau, G. and Lazdunski, M. (1999) Receptors for a growing family of secreted phospholipases A2. Trends. Pharmaco.l Sci. 20, 162-170. 19. John, W. and Sons.(1997)Venom Phospholipase A2 Enzymes:structure, function and mechanism. 20. van den Bergh, C.J., Slotboom, A.J., Verheij, H.M., de Haas, G.H. (1988) The role of aspartic acid-49 in the active site of phospholipase A2. A site-specific mutagenesis study of porcine pancreatic phospholipase A2 and the rationale of the enzymatic activity of [lysine49]phospholipase A2 from Agkistrodon piscivorus piscivorus' venom. Eur. J. Biochem. 176, 353-357. 21. Ward, R.J., Chioato, L., de Oliveira, A.H., Ruller, R., Sa, J.M. (2002) Active-site mutagenesis of a Lys49-phospholipase A2: biological and membrane-disrupting activities in the absence of catalysis. Biochem. J. 362, 89-96. 22. Shimohigashi, Y., Tani, A., Yamaguchi, Y., Ogawa, T., Ohno, M. (1996) Discriminatory recognition of membrane phospholipids by lysine-49- phospholipases A2 from Trimeresurus flavoviridis venom. J. Mol. Recognit. 9, 639-643. 23. Zuliani, J.P., Fernandes, C.M., Zamuner, S.R., Gutierrez, J.M., Teixeira, C.F. (2005) Inflammatory events induced by Lys-49 and Asp-49 phospholipases A2 isolated from Bothrops asper snake venom: role of catalytic activity. Toxicon. 45, 335-346. 24. Brian J. Bahnson(2005) Structure, function and interfacial allosterism in phospholipase A2: insight from the anion-assisted dimerq Archives of Biochemistry and Biophysics 433, 96–106 25 Hazen, S.L. and Gross, R.W. (1991) ATP-dependent regulation of rabbit myocardial cytosolic calcium-independent phospholipase A2. J. Biol. Chem. 266, 14526-14534. 26. Rao, C.S. and Damodaran, S. (2004) Surface pressure dependence of phospholipase A2 activity in lipid monolayers is linked to interfacial water activity. Colloids Surf. B. Biointerfaces. 34, 197-204. 27. Cajal, Y., Berg, O.G. and Jain, M.K.(2004) Origins of delays in monolayer kinetics: phospholipase A2 paradigm. Biochemistry 43, 9256-9264. 28. Slotboom, A.J. and de Haas, G.H. (1975) Specific transformations at the N-terminal region of phospholipase A2. Biochemistry 14, 5394-5399. 29. Waite, M., (1966) Biochemistry of lipid :lipoprotein and membrane, p201-214 Plenum Press, New York 30. Burack, W.R., Dibble, A.R., Allietta, M.M. and Biltonen, R.L. (1997) Changes in vesicle morphology induced by lateral phase separation modulate phospholipase A2 activity. Biochemistry 36, 10551-10557. 31. Reichert, A., Ringsdorf, H. and Wagenknecht, A. (1992) Spontaneous domainformation of phospholipase A2 at interfaces: fluorescence microscopy of the interaction of phospholipase A2 with mixed monolayers of lecithin, lysolecithin and fatty acid. Biochim. Biophys. Acta 1106, 178-188. 32. Bollinger, J.G., Diraviyam, K., Ghomashchi, F., Murray, D. and Gelb, M.H. (2004) Interfacial binding of bee venom secreted phospholipase A2 to membranes occurs predominantly by a nonelectrostatic mechanism. Biochemistry 43, 13293-13304. 33. 洪水根,汪德耀(1997)膜分子生物學,水產出版社 34. Maget-Dana, R. (1999) The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochim. Biophys. Acta 1462, 109-140. 35. Vollhardt, D., Fainerman, V.B. (2000) Penetration of dissolved amphiphiles into two-dimensional aggregating lipid monolayers. Adv. Colloid Interface Sci. 86, 103-151. 36. Mukhopadhyay, S. and Cho, W. (1996) Interactions of annexin V with phospholipidmonolayers. Biochim. Biophys. Acta 1279, 58-62. 37. Petty, and M.C. (1996) Langmuir-Blodgett films. An introduction. Cambridge University press 38. Bar, L.K., Barenholz, Y. and Thompson, T.E. (1997) Effect of sphingomyelin composition on the phase structure of phosphatidylcholine-sphingomyelin bilayers. Biochemistry 36, 2507-2516. 39. Rintoul, D.A. and Welti, R. (1989) Thermotropic behavior of mixtures of glycosphingolipids and phosphatidylcholine: effect of monovalent cations on sulfatide and galactosylceramide. Biochemistry 28, 26-31. 40. Kampf, J.P., Frank, C.W., Malmstrom, E.E. and Hawker, C.J. (1999) Adaptation of bulk constitutive equations to insoluble monolayer collapse at the air-water interface. Science 283, 1730-1733. 41. Doisy, A., Proust, J.E., Ivanova, Tz., Panaiotov, I. And Dubois, J.L. (1996) Phospholipid/Drug interactions in liposomes studied by rheological properties of monolayers. Langmuir 12, 6098-6103 42. Mirsky, V.M. (1994) Effect of the lipid hydrolysis products on the phospholipase A2 action towards lipid monolayer. Chem. Phys. Lipids 70, 75-81. 43. Phillips, M.C., Graham, D.E. and Hauser, H. (1975) Lateral compressibility and penetration into phospholipid monolayers and bilayer membranes. Nature 254, 154-156. 44. Brezesinski, G. and Mohwald, H. (2003) Langmuir monolayers to study interactions at model membrane surfaces. Adv. Colloid Interface Sci. 100-102, 563-584. 45. Blume, A. (1979) A comparative study of the phase transitions of phospholipid bilayers and monolayers. Biochim. Biophys. Acta 557, 32-44. 46. Davies, R.J. and Jones, M.N. (1992) The thermal behaviour of phosphatidylcholine-glycophorin monolayers in relation to monolayer and bilayer internal pressure. Biochim. Biophys. Acta 1103, 8-12. 47. Surewicz, W.K., Mantsch, H.H. and Chapman, D. (1993) Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry 32, 389-394. 48. Surewicz, W.K., Stepanik, T.M., Szabo, A.G. and Mantsch, H.H. (1988) Lipid-induced changes in the secondary structure of snake venom cardiotoxins. J. Biol. Chem. 263, 786-790. 49. Forouhar, F., Huang, W.N., Liu, J.H., Chien, K.Y., Wu, W.G. and Hsiao, C.D. (2003) Structural Basis of Membrane-induced Cardiotoxin A3 Oligomerization. J. Biol. Chem. 278, 21980-21988. 50. Tatulian, S.A., Biltonen, R.L. and Tamm, L.K. (1997) Structural changes in secretory phospholipase A2 induced by membrane binding: a clue to interfacial activation? J. Mol. Biol. 268, 809-815 51. Lin, Y.H., Huang, W.N., Lee, S.C. and Wu, W.G. (2000) Heparin reduces the alpha-helical content of cobra basic phospholipase A(2) and promotes its complex formation. Int. J. Biol. Macromol. 27, 171-176. 52. Goormaghtigh, E., Raussens, V., and Ruysschaert, J.M. (1999) Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim. Biophys. Acta 1422, 105-185. 53. Harrick, N.J.(1979) Internal reflection spectroscopy. Ossining, NewYork. 54. Pan, Y.H., Epstein, T.M., Jain, M.K. and Bahnson, B.J. (2001) Five coplanar anion binding sites on one face of phospholipase A2: relationship to interface binding. Biochemistry 40, 609-617. 55. Yokoyama, S. and Kezdy, F.J. (1991) Monolayers of long chain lecithins at the air/water interface and their hydrolysis by phospholipase A2. J. Biol. Chem. 266, 4303-4308. 56. Maloney, K.M., Grandbois, M., Grainger, D.W., Salesse, C., Lewis, K.A. and Roberts. M.F. (1995) Phospholipase A2 domain formation in hydrolyzed asymmetric phospholipid monolayers at the air/water interface. Biochim. Biophys. Acta 1235, 395-405. 57. Grandbois, M., Desbat, B. and Salesse, C. (2000) Monitoring of phospholipid monolayer hydrolysis by phospholipase A2 by use of polarization-modulated Fourier transform infrared spectroscopy. Biophys. Chem. 88, 127-135. 58. Shinji YokoyamaS and F. J. Kezdyg (1976) Comparative Studies of Lipase and Phospholipase A, Acting on Substrate Monolayers. The Journal of Biological Chemistry.251, 3128-3133.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/35396Test
الإتاحة: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/35396Test
رقم الانضمام: edsbas.A949AFC3
قاعدة البيانات: BASE