دورية أكاديمية

Medical X-band linear accelerator for high-precision radiotherapy

التفاصيل البيبلوغرافية
العنوان: Medical X-band linear accelerator for high-precision radiotherapy
المؤلفون: Lee, Yong-Seok, Kim, Geun-Ju, Lee, Jeong-Hun, Kim, Insoo S., Kim, Jung-Il, Shin, Ki Young, Seol, Yunji, Oh, Taegeon, An, Na-Young, Lee, Jaehyeon, Hwang, Jinho, Oh, Youngah, Kang, Young-Nam
المساهمون: Lee, Yong-Seok
بيانات النشر: WILEY
سنة النشر: 2021
المجموعة: Pohang University of Science and Technology (POSTECH): Open Access System for Information Sharing (OASIS)
مصطلحات موضوعية: LINAC, PHOTON, DESIGN, MV, PERFORMANCE, SYSTEM, high-precision radiotherapy, linear accelerator, X-band RF technology, X-ray production
الوصف: Purpose: Recently, high-precision radiotherapy systems have been developed by integrating computerized tomography or magnetic resonance imaging to enhance the precision of radiotherapy. For integration with additional imaging systems in a limited space, miniaturization and weight reduction of the linear accelerator (linac) system have become important. The aim of this work is to develop a compact medical linac based on 9.3 GHz X-band RF technology instead of the S-band RF technology typically used in the radiotherapy field. Methods: The accelerating tube was designed by 3D finite-difference time-domain and particle-in-cell simulations because the frequency variation resulting from the structural parameters and processing errors is relatively sensitive to the operating performance of the X-band linac. Through the 3D simulation of the electric field distribution and beam dynamics process, we designed an accelerating tube to efficiently accelerate the electron beam and used a magnetron as the RF source to miniaturize the entire linac. In addition, a side-coupled structure was adopted to design a compact linac to reduce the RF power loss. To verify the performance of the linac, we developed a beam diagnostic system to analyze the electron beam characteristics and a quality assurance (QA) experimental environment including 3D lateral water phantoms to analyze the primary performance parameters (energy, dose rate, flatness, symmetry, and penumbra) The QA process was based on the standard protocols AAPM TG-51, 106, 142 and IAEA TRS-398. Results: The X-band linac has high shunt impedance and electric field strength. Therefore, even though the length of the accelerating tube is 37 cm, the linac could accelerate an electron beam to more than 6 MeV and produce a beam current of more than 90 mA. The transmission ratio is measured to be approximately 30% similar to 40% when the electron gun operates in the constant emission region. The percent depth dose ratio at the measured depths of 10 and 20 cm was approximately 0.572, ...
نوع الوثيقة: article in journal/newspaper
اللغة: English
ردمك: 978-0-00-678224-7
0-00-678224-8
تدمد: 0094-2405
العلاقة: MEDICAL PHYSICS; Radiology, Nuclear Medicine & Medical Imaging; https://oasis.postech.ac.kr/handle/2014.oak/107669Test; 47521; MEDICAL PHYSICS, v.48, no.9, pp.5327 - 5342; 000678224800001; 2-s2.0-85111397147
DOI: 10.1002/mp.15077
الإتاحة: https://doi.org/10.1002/mp.15077Test
https://oasis.postech.ac.kr/handle/2014.oak/107669Test
رقم الانضمام: edsbas.9D537522
قاعدة البيانات: BASE
الوصف
ردمك:9780006782247
0006782248
تدمد:00942405
DOI:10.1002/mp.15077