Numerical Dosimetry for Human Tissues in Presence of Wireless 5G Millimeter-Wave Devices Using an Equivalent Surface Impedance Boundary Condition Model

التفاصيل البيبلوغرافية
العنوان: Numerical Dosimetry for Human Tissues in Presence of Wireless 5G Millimeter-Wave Devices Using an Equivalent Surface Impedance Boundary Condition Model
المؤلفون: Ijjeh, Abdelrahman, Mifdal, Soukaina, Cueille, Marylene, Dubard, Jean-Lou, Ney, Michel
المساهمون: Laboratoire d'Electronique, Antennes et Télécommunications (LEAT), Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA), IMT Atlantique (IMT Atlantique), Institut Mines-Télécom Paris (IMT), IEEE
المصدر: Conférence EUCAP 2023 ; https://hal.science/hal-04056596Test ; Conférence EUCAP 2023, Mar 2023, Florence, Italy. pp.1-5, ⟨10.23919/EuCAP57121.2023.10133767⟩ ; https://ieeexplore.ieee.org/document/10133767/metrics#metricsTest et https://www.eucap2023.orgTest/
بيانات النشر: HAL CCSD
سنة النشر: 2023
المجموعة: HAL Université Côte d'Azur
مصطلحات موضوعية: skin effect, surface impedance, computational electromagnetics, propagation, 5G mobile communication, absorbing media, dosimetry, electromagnetic wave propagation, millimetre wave communication, [SPI.ELEC]Engineering Sciences [physics]/Electromagnetism
جغرافية الموضوع: Florence, Italy
الوقت: Florence, Italy
الوصف: International audience ; In lossy dielectrics (e.g., human tissues) the skin effect plays a major role in Electromagnetic (EM) waves propagation as frequencies increase. This skin effect indicates that EM-waves decay exponentially as they penetrate good conductors, and they practically vanish as they traverse a distance of few skin depths. Moreover, in such media, the effective EM-waves’ wavelengths become very short, leading to a big increase in their electric size. Consequently, huge number of cells is necessary to represent such problem (e.g., numerical dosimetry). This article investigates the use of an equivalent Surface Impedance Boundary Condition (SIBC) to replace the3D lossy dielectric object. This SIBC envelope excludes its interior from the computational domain, thus, one can use larger mesh sizes (e.g., one tenth of free-space wavelength). This leads to an enormous computational gain as compared to 3Ddiscretization of the lossy dielectric and offers the capability for simulating large computational problems.
نوع الوثيقة: conference object
اللغة: English
العلاقة: hal-04056596; https://hal.science/hal-04056596Test
DOI: 10.23919/EuCAP57121.2023.10133767
الإتاحة: https://doi.org/10.23919/EuCAP57121.2023.10133767Test
https://hal.science/hal-04056596Test
رقم الانضمام: edsbas.8ADACF0E
قاعدة البيانات: BASE