دورية أكاديمية

Variability of P26 and P10 genes in Colombian isolates of Potato yellow vein virus (PYVV) ; Variabilidad de los genes P26 y P10 en aislamientos colombianos del Potato yellow vein virus (PYVV)

التفاصيل البيبلوغرافية
العنوان: Variability of P26 and P10 genes in Colombian isolates of Potato yellow vein virus (PYVV) ; Variabilidad de los genes P26 y P10 en aislamientos colombianos del Potato yellow vein virus (PYVV)
المؤلفون: Calderón, Jhon, Mosquera Vásquez, Teresa, Vargas, Ángela María
المصدر: Agronomía Colombiana; Vol. 37 Núm. 2 (2019); 129-143 ; Agronomía Colombiana; Vol. 37 No. 2 (2019); 129-143 ; Agronomía Colombiana; v. 37 n. 2 (2019); 129-143 ; 2357-3732 ; 0120-9965
بيانات النشر: Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias Agrarias
سنة النشر: 2019
المجموعة: Universidad Nacional de Colombia: Portal de Revistas UN
مصطلحات موضوعية: tripartite genome, Crinivirus, Solanum tuberosum, negative selection, Virology, Plant pathology, Genetics, genoma tripartito, selección negativa, Virología, Fitopatología, Genética
الوصف: Potato yellow vein virus (PYVV) is the causal agent of the potato yellow vein disease and can reduce potato production up to 50%. This virus also infects tomatoes and can remain asymptomatic in plants. PYVV transmission is mediated by vegetative seed, the vector Trialeurodes vaporariorum, and grafts. Its genome has the P26 and P10 genes that are orthologues in the Crinivirus genus, which have been characterized as pathogenic factors and have not been studied in PYVV. We analyzed the variability of P26 and P10 from 45 and 48 sequences, which were obtained by RT-PCR amplification of the total RNA of symptomatic potato leaves from the provinces of Nariño, Cundinamarca, and Boyaca (Colombia). We included sequences of each gene of the PYVV genome of potato and tomato isolates from GenBank. The variability in these genes is influenced by the flow and uncontrolled use of vegetative seed between different provinces, that favor the dispersion of viral variants. In addition, the variability analysis based on maximum likelihood trees, haplotypes, and diversity indices showed that P26 is more variable than P10 and both are more variable in Andigena than in Phureja potatoes. The Tajima and Fu and Li tests revealedthat these genes are subject to negative selection. ; El virus Potato yellow vein virus (PYVV), en español virus del amarillamiento de las venas de la papa, es el agente causal de laenfermedad conocida como amarillamiento de venas de la papa y puede reducir la producción hasta un 50%. Este virus también infecta tomate y puede permanecer en plantas asintomáticas. Su transmisión está mediada por semilla vegetativa, el vector Trialeurodes vaporariorum e injertos. Su genoma codifica los genes P26 y P10 que son ortólogos en el género Crinivirus, en el cual se han caracterizado como factores de patogenicidad y no han sido estudiados en PYVV. Se analizó la variabilidad de P26 y P10 a partir de 45 y 48 secuencias respectivamente, obtenidas de la amplificación por RT-PCR del RNA total de hojas sintomáticas de papa de los ...
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
العلاقة: https://revistas.unal.edu.co/index.php/agrocol/article/view/72638/73181Test; Bandelt, H.J., P. Forster, and A. Röhl. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37-48. Doi:10.1093/oxfordjournals.molbev.a026036; Barragán, C.E. and M. Guzmán-Barney. 2014. Molecular detection of Potato yellow vein virus in the natural whitefly vector Trialeurodes vaporariorum, Westwood. Rev. Prot. Veg. 29(3), 168-176.; Chaves-Bedoya, G., M. Guzmán-Barney, and L. Ortiz-Rojas. 2013. Genetic structure and evidence of putative Darwinian diversifying selection in Potato yellow vein virus (PYVV). Agron. Colomb. 31(2), 161-168.; Cubillos, K. and M. Guzmán-Barney. 2015. Molecular variability of three genes of Potato vein yellow virus infecting Solanum tuberosum, using single strand conformational polymorphism. Acta Biol. Colomb. 20(1), 233-237. Doi:10.15446/abc.v20n1.40993; Domingo, E. and J. Holland. 1997. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 51,151-178. Doi:10.1146/annurev.micro.51.1.151; Eliasco, E., I.C. Livieratos, G. Müller, M. Guzman, L.F. Salazar, and R.H. Coutts. 2006. Sequences of defective RNAs associated with Potato yellow vein virus. Arch. Virol. 151, 201-204. Doi:10.1007/s00705-005-0625-7; Erkiş-Güngör, G. and B. Çevik. 2019. Genetic Diversity and phylogenetic analysis of Citrus tristeza virus isolates from Turkey. Adv. Virol. 2019, 7163747. Doi:10.1155/2019/7163747; EEPO (European and Mediterranean plant protection Organization). URL: https://gd.eppo.int/taxon/PYVV00Test (accessed 7 July 2019).; Fu, Y.X. and W.H. Li. 1993. Statistical tests of neutrality of mutations. Genetics 133, 693-709.; Gamarra, H., C. Chuquillanqui, and G. Müller. 2002. Transmisión del virus del amarillamiento de las venas de la papa en variedades y clones de Solanum tuberosum L. Proceedings of the Entomological National Convention. Potato International Center (CIP), Lima.; García-Arenal, F. and A. Fraile. 2011. Population dynamics and genetics of plant infection by viruses. pp. 263-281. In: Caranta, C., M.A. Aranda, M. Tepfer, and J.J. Lopez-Moya (eds.). Recent Advances in Plant Virology. Caister Academic Press, Norfolk, UK.; García-Arenal, F., A. Fraile, and J.M. Malpica. 2001. Variability and genetic structure of plant virus populations. Annu. Rev. Phytopathol. 39, 157-186. Doi:10.1146/annurev.phyto.39.1.157; Grimsley, N., B. Hohn, T. Hohn, and R. Walden. 1986. “Agroinfection,” an alternative route for viral infection of plants by using the Ti plasmid. Proc. Natl. Acad. Sci. USA. 83 (10), 3282-3286. Doi:10.1073/pnas.83.10.3282; Guzmán, M., E. Ruiz, N. Arciniegas, and R. Coutts. 2006. Occurrence and variability of Potato yellow vein virus in three departments of Colombia. J, Phytopathol. 154, 748-750. Doi:10.1111/j.1439-0434.2006.01174.x; Genbank. 2019. URL: https://www.ncbi.nlm.nih.gov/genom/?term=Potato+yellow+vein+virusTest (accessed June 2019).; Guzmán-Barney, M., P.A. Rodríguez-Burgos, and J. Calderón-Romero. 2013. Detección por inmunoimpresión de Potato yellow vein virus (PYVV) en diferentes órganos de papa: herramienta sencilla y útil en diagnóstico del virus de amarillamiento de nervaduras de papa y certificación de semillas. Editorial UN, Bogota.; Hernández, A. and M. Guzmán-Barney. 2014. Potato yellow vein virus detection in different organs of Solanum tuberosum Phureja group cv Criolla Colombia by conventional and real time qRT-PCR. Rev. Colomb. Biotecnol. 16(1), 74-85. Doi:10.15446/rev.colomb.biote.v16n1.44226; Huang, X. and A. Madan. 1999. CAP3: A DNA sequence assembly program. Genome Res. 9, 868-877. Doi:10.1101/gr.9.9.868; Kiss, Z., V. Medinaand, and W.B. Falk. 2013. Crinivirus replication and host interactions. Front. Microbiol. 4(99), 1-11. Doi:10.3389/fmicb.2013.00099; Koressaar, T. and M. Remm. 2007. Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10), 1289-1291. Doi:10.1093/bioinformatics/btm091; Koloniuk, I., T. Thekke-Veetil, J.S. Reynard, P. Mavrič, J. Přibylová, J. Brodard, I. Kellenberger, T. Sarkisova, J. Špak, J. Lamovšek, S. Massart, T. Ho, J.D. Postman, and I.E. Tzanetakis. 2014. Molecular characterization of divergent Closterovirus isolates infecting Ribes species. Viruses 10(7), 2-11. Doi:10.3390/v10070369; Kumar, S., G. Stecher, and K. Tamura. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870-1874. Doi:10.1093/molbev/msw054; Librado, P. and J. Rozas. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452. Doi:10.1093/bioinformatics/btp187; Livieratos, I., E. Eliasco, G. Muller, R. Olsthoorn, L. Salazar, W. Pleij, and R.H Coutts. 2004. Analysis of the RNA of Potato yellow vein virus: evidence for a tripartite genome and conserved 3’-terminal structures among members of the genus Crinivirus. J. Gen. Virol. 85(7), 2065-2075. Doi:10.1099/vir.0.79910-0; Martelli, A., N. Abou Ghanem-Sabanadzovic, A.A. Agranovsky, M. Al Rwahnih, V.V. Dolja, C.I. Dovas, M. Fuchs, P. Gugerli, J.S. Hu, W. Jelkmann, N.I. Katis, V.I. Maliogka, M.J. Melzer, W. Menzel, A. Minafra, M.E. Rott, A. Rowhani, S. Sabanadzovic, and P. Saldarelli. 2012. Taxonomic revision of the family Closteroviridae with special reference to the grapevine leafrollassociated members of the genus Ampelovirus and the putative species unassigned to the family. J. Plant Pathol. 94(1), 7-19.; Medina, V., G. Rodrigo, T. Tian, V.V. Dollja, and M. Achon. 2003. Comparative cytopathology of Crinivirus infections in different plant hosts. Ann. Appl. Biol. 143, 99-100. Doi:10.1111/j.1744-7348.2003.tb00274.x; Medina, V., M.R. Sudarshanab, T. Tianb, K.S. Ralstonb, H.H. Yehb, and B.W. Falk. 2005. The Lettuce infectious yellows virus (LIYV)-encoded P26 is associated with plasmalemma deposits within LIYV-infected cells. Virology 333(2), 367-373. Doi:10.1016/j.virol.2005.01.012; Moncef, B. 2010. Selective pressure, putative recombination events and evolutionary relationships among members of the family Closteroviridae: A proposal for a new classification. Biochem. Syst. Ecol. 38(6), 1185-1192.; Muhire, B.M., A. Varsani, and D.P. Martin. 2014. SDT: a Virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 9: e108277. Doi:10.1371/journal.pone.0108277; Muñoz, D., P.A. Gutiérrez, and M. Marín. 2016. Detección y caracterización molecular del Potato virus Y (PVY) en cultivos de papa (Solanum tuberosum L.) del norte de Antioquia, Colombia. Rev. Prot. Veg. 31, 9-19.; Nei, M. and S. Kumar. 2000. Molecular evolution and phylogenetics. Oxford University Press, New York, USA.; Ñústez, C.E. 2011. Variedades de papa liberadas en Colombia. URL: http://www.papaunc.com/variedades-liberadas-porla-universidad-nacional-de-colombiaTest (accessed 7 July 2019).; Offei, S., N. Arciniegas, G. Müller, M. Guzman-Barney, L. Salazar, and R. Coutts. 2003. Molecular variation of Potato yellow vein virus isolates. Arch. Virol. 149(4), 821-827. Doi:10.1007/s00705-003-0250-2; Pérez-Losada, M., M. Arenas, J.C. Galán, F. Palero, and F. González-Candelas. 2015. Recombination in viruses: mechanisms, methods of study, and evolutionary consequences. Infect. Genet. Evol. 30, 296-307. Doi:10.1016/j.meegid.2014.12.022; Rubio, L., J. Guerri, and P. Moreno. 2013. Genetic variability and evolutionary dynamics of viruses of the family Closteroviridae. Front. Microbiol. 4(151). Doi:10.3389/fmicb.2013.00151; Ruiz, L., A. Simón, C. García, L. Velasco, and D. Janssen. 2018. First natural crossover recombination between two distinct species of the family Closteroviridae leads to the emergence of a new disease. PLoS One 13(9), e0198228. Doi:10.1371/journal.pone.0198228; Salazar, L.F., G. Müller, M. Querci, L.J. Zapata, and R.A. Owens. 2000. Potato yellow vein disease: its host range, distribution in South America, and identification as a Crinivirus transmitted by Trialeurodes vaporariorum. Ann. Appl. Biol. 137(1), 7-19. Doi:10.1111/j.1744-7348.2000.tb00052.x; Stewart, L.R., V. Medina, M.R. Sudarshana, and B.W. Falk. 2009. Lettuce infectious yellows virus-encoded P26 induces plasmalemma deposit cytopathology. Virology 388, 212-220. Doi:10.1016/j.virol.2009.03.016; Sanjuán, R., M.R. Nebot, N. Chirico, L.M. Mansky, and R. Belshaw. 2010. Viral mutation rates. J. Virol. 84(19), 9733-9748. Doi:10.1128/JVI.00694-10; Sanjuán, R. and P. Domingo-Calap. 2016. Mechanisms of viral mutation. Cell. Mol. Life Sci. 73, 4433-4448. Doi:10.1007/s00018-016-2299-6; Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585-595.; Templeton, A.R., K.A. Crandall, and C.F. Sing. 1992. A cladistic analysis of phenotypic association with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619-633.; Townsend, A. 2014. Defining viral species: making taxonomy useful. J. Virol. 11(1) 131. Doi:10.1186/1743-422X-11-131; Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B.C. Faircloth, M. Remm, and S.G. Rozen. 2012. Primer3 - new capabilities and interfaces. Nucleic Acids Res. 40(15), e115. Doi:10.1093/nar/gks596; Wale, S., B. Platt, and N. D. Cattlin. 2008. Diseases, pests and disorders of potatoes: a colour handbook. CRC Press, Boca Raton, USA. Doi:10.1111/j.1365-3059.2008.01936.x; Wang, J., M. Turina, L.R. Stewart, J.A. Lindbo, and B.W. Falk. 2009. Agroinoculation of the Crinivirus, Lettuce infectious yellows virus, for systemic plant infection. Virology 392(1), 131-136. Doi:10.1016/j.virol.2009.06.034; https://revistas.unal.edu.co/index.php/agrocol/article/view/72638Test
الإتاحة: https://doi.org/10.1093/oxfordjournals.molbev.a026036Test
https://doi.org/10.15446/abc.v20n1.40993Test
https://doi.org/10.1146/annurev.micro.51.1.151Test
https://doi.org/10.1007/s00705-005-0625-7Test
https://doi.org/10.1155/2019/7163747Test
https://doi.org/10.1146/annurev.phyto.39.1.157Test
https://doi.org/10.1073/pnas.83.10.3282Test
https://doi.org/10.1111/j.1439-0434.2006.01174.xTest
https://doi.org/10.15446/rev.colomb.biote.v16n1.44226Test
https://doi.org/10.1101/gr.9.9.868Test
حقوق: Derechos de autor 2019 Agronomía Colombiana ; https://creativecommons.org/licenses/by-nc-sa/4.0Test
رقم الانضمام: edsbas.7A1E791D
قاعدة البيانات: BASE