دورية أكاديمية

Downregulation of Rap1GAP Expression Activates the TGF-β/Smad3 Pathway to Inhibit the Expression of Sodium/Iodine Transporter in Papillary Thyroid Carcinoma Cells

التفاصيل البيبلوغرافية
العنوان: Downregulation of Rap1GAP Expression Activates the TGF-β/Smad3 Pathway to Inhibit the Expression of Sodium/Iodine Transporter in Papillary Thyroid Carcinoma Cells
المؤلفون: Zheng Yan, Wang Yangyanqiu, Han Shuwen, Mao Jing, Liao Haihong, Chen Gong, Jin Yin, Zhou Qing, Gao Weili
المصدر: BioMed Research International, Vol 2021 (2021)
بيانات النشر: Hindawi Limited
سنة النشر: 2021
المجموعة: Directory of Open Access Journals: DOAJ Articles
مصطلحات موضوعية: Medicine
الوصف: Objective. Rap1GAP is considered a tumor suppressor gene, but its regulatory mechanism in papillary thyroid cancer (PTC) has not been clearly elucidated. The aim of this study was to explore whether the regulation between Rap1GAP and sodium/iodine transporter (NIS) in tumorigenesis of PTC is mediated by TGF-β1. Methods. Western blotting (WB) and quantitative reverse-transcription polymerase chain reaction were performed to analyze the relationships between TGF-β1 concentration and NIS expression. After transfecting BCPAP cells with siRNAs, the Rap1GAP interference model was successfully established. Then, the expression and nuclear localization of TGF-β1 and pathway-related proteins were detected. Flow cytometry was applied to analyze cell apoptosis and cycle. WB was performed to detect apoptotic-related proteins. Wound healing and transwell assays were used to measure cell migration and invasion. EDU was performed to detect cell proliferative activity. Results. The results suggested that TGF-β1 could significantly inhibit the expression of NIS in both mRNA and protein levels. In BCPAP cells transfected with siRNA-Rap1GAP, the expression levels of TGF-β1, Foxp3, and p-Smad3 were significantly increased. By applying immunofluorescence assay, the nuclear localizations of TβR-1 and p-Smad3 were found to be activated. Moreover, anti-TGF-β1 can reverse the decrease in NIS expression caused by downregulation of Rap1GAP. Additionally, the knockdown of Rap1GAP could alter the cell apoptosis, cycle, migration, invasion, and proliferation of BCPAP. Conclusion. The downregulation of Rap1GAP expression can activate the TGF-β/Smad3 pathway to inhibit NIS expression and alter the tumor cell functions of PTC.
نوع الوثيقة: article in journal/newspaper
اللغة: English
تدمد: 2314-6141
العلاقة: http://dx.doi.org/10.1155/2021/6840642Test; https://doaj.org/toc/2314-6141Test; https://doaj.org/article/316a40c1f0e14e458848e24890e223d6Test
DOI: 10.1155/2021/6840642
الإتاحة: https://doi.org/10.1155/2021/6840642Test
https://doaj.org/article/316a40c1f0e14e458848e24890e223d6Test
رقم الانضمام: edsbas.5CB884FD
قاعدة البيانات: BASE
الوصف
تدمد:23146141
DOI:10.1155/2021/6840642