دورية أكاديمية

Applying Differential Wave-Front Sensing and Differential Power Sensing for Simultaneous Precise and Wide-Range Test-Mass Rotation Measurements

التفاصيل البيبلوغرافية
العنوان: Applying Differential Wave-Front Sensing and Differential Power Sensing for Simultaneous Precise and Wide-Range Test-Mass Rotation Measurements
المؤلفون: Neda Meshksar, Moritz Mehmet, Katharina-Sophie Isleif, Gerhard Heinzel
المصدر: Sensors; Volume 21; Issue 1; Pages: 164
بيانات النشر: Multidisciplinary Digital Publishing Institute
سنة النشر: 2020
المجموعة: MDPI Open Access Publishing
مصطلحات موضوعية: differential wave-front sensing, differential power sensing, deep frequency modulation interferometry, test-mass readout, torsion balance
الوصف: We propose to combine differential wave-front sensing (DWS) and differential power sensing (DPS) in a Mach-Zehnder type interferometer for measuring the rotational dynamics of a test-mass. Using the DWS method, a high sensitive measurement of 6 nrad Hz−1/2 in sub-Hz frequencies can be provided around the test-mass nominal position (±0.11 mrad), whereas the measurement of a wide rotation range (±5 mrad) is realized by the DPS method. The interferometer can be combined with deep frequency modulation (DFM) interferometry for measurement of the test-mass translational dynamics. The setup and the resulting interferometric signals are verified by simulations. An optimization algorithm is applied to find suitable positions of the lenses and the waist size of the input laser in order to determine the best trade of between the slope of DWS, dynamic range of DPS, and the interferometric contrast. Our simulation further allows to investigate the layout for robustness and design tolerances. We compare our device with a recent experimental realization of a DFM interferometer and find that a practical implementation of the interferometer proposed here has the potential to provide translational and rotational test-mass tracking with state-of-the-art sensitivity. The simple and compact design, and especially the capability of sensing the test-mass rotation in a wide range and simultaneously providing a high-precision measurement close to the test-mass nominal position makes the design especially suitable for example for employment in torsion pendulum setups.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
العلاقة: Optical Sensors; https://dx.doi.org/10.3390/s21010164Test
DOI: 10.3390/s21010164
الإتاحة: https://doi.org/10.3390/s21010164Test
حقوق: https://creativecommons.org/licenses/by/4.0Test/
رقم الانضمام: edsbas.5CAF767
قاعدة البيانات: BASE