دورية أكاديمية

Ameliorative Effects of Zinc Oxide, in Either Conventional or Nanoformulation, Against Bisphenol A Toxicity on Reproductive Performance, Oxidative Status, Gene Expression and Histopathology in Adult Male Rats

التفاصيل البيبلوغرافية
العنوان: Ameliorative Effects of Zinc Oxide, in Either Conventional or Nanoformulation, Against Bisphenol A Toxicity on Reproductive Performance, Oxidative Status, Gene Expression and Histopathology in Adult Male Rats
المؤلفون: El-Kossi, Dina M. M. H., Ibrahim, Shawky S., Hassanin, Kamel M. A., Hamad, Nashwa, Rashed, Noha A., Abdel-Wahab, Ahmed
المساهمون: Minia University
المصدر: Biological Trace Element Research ; ISSN 0163-4984 1559-0720
بيانات النشر: Springer Science and Business Media LLC
سنة النشر: 2023
مصطلحات موضوعية: Biochemistry (medical), Inorganic Chemistry, Clinical Biochemistry, General Medicine, Biochemistry, Endocrinology, Diabetes and Metabolism
الوصف: Bisphenol A (BPA) is a widely used endocrine disruptor that represents a significant risk to male reproductive function. Zinc (Zn) is vital for appropriate development of testes and to guarantee optimal testicular function and spermatogenesis. Our goal was to investigate if zinc oxide (ZnO), either in conventional or nanoformulation, could safeguard adult male rats’ reproductive performance against the damaging effects of BPA. Signaling expression of CYP11A1 and Nrf-2 in the testis, testicular oxidant-antioxidant status, Bax/Bcl-2 apoptotic ratio, and histological examination of various reproductive organs were all evaluated. Twenty-eight adult male albino rats were divided randomly into 4 groups (7 animals each) including the control, BPA, conventional zinc oxide (cZnO) + BPA, and zinc oxide nanoparticles (ZnO-NPs) + BPA groups. The study was extended for 2 successive months. Our findings revealed strong negative effects of BPA on sperm cell characteristics such as sperm motility, viability, concentration and abnormalities. Additionally, BPA reduced serum levels of testosterone, triiodothyronine (T3), and thyroxine (T4). Also, it evoked marked oxidative stress in the testes; elevating malondialdehyde (MDA) and reducing total antioxidant capacity (TAC). BPA significantly downregulated testicular mRNA relative expression levels of CYP11A1 and Nrf-2 , compared to control. Testicular apoptosis was also prompted by increasing Bax/ Bcl-2 ratio in testicular tissue. Histopathological findings in the testes, epididymis, prostate gland, and seminal vesicle confirmed the detrimental effects of BPA. Interestingly, cZnO and ZnO-NPs significantly alleviated all negative effects of BPA, but ZnO-NPs performed better. In conclusion, our findings point to ZnO, specifically ZnO-NPs, as a viable treatment for BPA-induced testicular dysfunction.
نوع الوثيقة: article in journal/newspaper
اللغة: English
DOI: 10.1007/s12011-023-03830-w
DOI: 10.1007/s12011-023-03830-w.pdf
DOI: 10.1007/s12011-023-03830-w/fulltext.html
الإتاحة: https://doi.org/10.1007/s12011-023-03830-wTest
حقوق: https://creativecommons.org/licenses/by/4.0Test ; https://creativecommons.org/licenses/by/4.0Test
رقم الانضمام: edsbas.57D69AA1
قاعدة البيانات: BASE