دورية أكاديمية

Molecular streaming and its voltage control in ångström-scale channels

التفاصيل البيبلوغرافية
العنوان: Molecular streaming and its voltage control in ångström-scale channels
المؤلفون: Mouterde, Timothée, Keerthi, A., Poggioli, Anthony, Dar, S., Siria, A., Geim, A., Bocquet, Lydéric, Radha, B.
المساهمون: Micromegas : Nano-Fluidique, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), School of Physics and Astronomy Manchester, University of Manchester Manchester, ANR-17-CE09-0046,NEPTUNE,Transport hors equilibre de fluides aux échelles nanométriques(2017)
المصدر: ISSN: 0028-0836.
بيانات النشر: HAL CCSD
Nature Publishing Group
سنة النشر: 2019
مصطلحات موضوعية: KSK campus, Lahore, Pakistan † these authors contributed equally to the work, [PHYS]Physics [physics], [PHYS.COND]Physics [physics]/Condensed Matter [cond-mat], [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
الوصف: International audience ; The field of nanofluidics has shown considerable progress over the past decade thanks to key instrumental advances, leading to the discovery of a number of exotic transport phenomena for fluids and ions under extreme confinement. Recently, van der Waals assembly of 2D materials 1 allowed fabrication of artificial channels with ångström-scale precision 2. This ultimate confinement to the true molecular scale revealed unforeseen behaviour for both mass 2 and ionic 3 transport. In this work, we explore pressure-driven streaming in such molecular-size slits and report a new electro-hydrodynamic effect under coupled pressure and electric force. It takes the form of a transistor-like response of the pressure induced ionic streaming: an applied bias of a fraction of a volt results in an enhancement of the streaming mobility by up to 20 times. The gating effect is observed with both graphite and boron nitride channels but exhibits marked material-dependent features. Our observations are rationalized by a theoretical framework for the flow dynamics, including the frictional interaction of water, ions and the confining surfaces as a key ingredient. The material dependence of the voltage modulation can be traced back to a contrasting molecular friction on graphene and boron nitride. The highly nonlinear transport under molecular-scale confinement offers new routes to actively control molecular and ion transport and design elementary building blocks for artificial ionic machinery, such as ion pumps. Furthermore, it provides a versatile platform to explore electro-mechanical couplings potentially at play in recently discovered mechanosensitive ionic channels 4 .
نوع الوثيقة: article in journal/newspaper
اللغة: English
العلاقة: hal-02125601; https://hal.science/hal-02125601Test; https://hal.science/hal-02125601/documentTest; https://hal.science/hal-02125601/file/Nature-Mouterde-2019.pdfTest
DOI: 10.1038/s41586-019-0961-5
الإتاحة: https://doi.org/10.1038/s41586-019-0961-5Test
https://hal.science/hal-02125601Test
https://hal.science/hal-02125601/documentTest
https://hal.science/hal-02125601/file/Nature-Mouterde-2019.pdfTest
حقوق: info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.57D29386
قاعدة البيانات: BASE