دورية أكاديمية

Ca2+and Ca2+-activated K+ channels that support and modulate transmitter release at the olivocochlear efferent-inner hair cell synapse

التفاصيل البيبلوغرافية
العنوان: Ca2+and Ca2+-activated K+ channels that support and modulate transmitter release at the olivocochlear efferent-inner hair cell synapse
المؤلفون: De San Martín, J.Z., Pyott, S., Ballestero, J., Katz, E.
المجموعة: Biblioteca Digital FCEN-UBA (Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires)
مصطلحات موضوعية: acetylcholine, calcium activated potassium channel, calcium channel L type, calcium channel N type, calcium channel P type, calcium channel Q type, calcium ion, calretinin, cell marker, iberiotoxin, nifedipine, nitrendipine, omega agatoxin IVA, omega conotoxin GVIA, synapsin, voltage gated calcium channel, calcium, calcium channel blocking agent, peptide, potassium channel blocking agent, acetylcholine release, animal cell, animal tissue, article, cochlear nerve, controlled study, Corti organ, efferent nerve, electrostimulation, female
الوصف: In the mammalian auditory system, the synapse between efferent olivocochlear (OC) neurons and sensory cochlear hair cells is cholinergic, fast, and inhibitory. This efferent synapse is mediated by the nicotinic α9α10 receptor coupled to the activation of SK2 Ca 2+-activated K+ channels that hyperpolarize the cell. So far, the ion channels that support and/or modulate neurotransmitter release from the OC terminals remain unknown. To identify these channels, we used an isolated mouse cochlear preparation and monitored transmitter release from the efferent synaptic terminals in inner hair cells (IHCs) voltage clamped in the whole-cell recording configuration. Acetylcholine (ACh) release was evoked by electrically stimulating the efferent fibers that make axosomatic contacts with IHCs before the onset of hearing. Using the specific antagonists for P/Q- and N-type voltage-gated calcium channels (VGCCs), ω-agatoxin IVA and ω-conotoxin GVIA, respectively, we show that Ca2+ entering through both types of VGCCs support the release process at this synapse. Interestingly, we found that Ca2+ entering through the dihydropiridine-sensitive L-type VGCCs exerts a negative control on transmitter release. Moreover, using immunostaining techniques combined with electrophysiology and pharmacology, we show that BK Ca2+-activated K+ channels are transiently expressed at the OC efferent terminals contacting IHCs and that their activity modulates the release process at this synapse. The effects of dihydropiridines combined with iberiotoxin, a specific BK channel antagonist, strongly suggest that L-type VGCCs negatively regulate the release of ACh by fueling BK channels that are known to curtail the duration of the terminal action potential in several types of neurons. Copyright © 2010 the authors. ; Fil:Ballestero, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. ; Fil:Katz, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
نوع الوثيقة: journal/newspaper
اللغة: unknown
العلاقة: http://hdl.handle.net/20.500.12110/paper_02706474_v30_n36_p12157_DeSanMartinTest
الإتاحة: https://doi.org/20.500.12110/paper_02706474_v30_n36_p12157_DeSanMartinTest
https://hdl.handle.net/20.500.12110/paper_02706474_v30_n36_p12157_DeSanMartinTest
حقوق: info:eu-repo/semantics/openAccess ; http://creativecommons.org/licenses/by/2.5/arTest
رقم الانضمام: edsbas.38E4C235
قاعدة البيانات: BASE