دورية أكاديمية

METTL16 promotes liver cancer stem cell self-renewal via controlling ribosome biogenesis and mRNA translation

التفاصيل البيبلوغرافية
العنوان: METTL16 promotes liver cancer stem cell self-renewal via controlling ribosome biogenesis and mRNA translation
المؤلفون: Xue, Meilin, Dong, Lei, Zhang, Honghai, Li, Yangchan, Qiu, Kangqiang, Zhao, Zhicong, Gao, Min, Han, Li, Chan, Anthony K. N., Li, Wei, Leung, Keith, Wang, Kitty, Pokharel, Sheela Pangeni, Qing, Ying, Liu, Wei, Wang, Xueer, Ren, Lili, Bi, Hongjie, Yang, Lu, Shen, Chao, Chen, Zhenhua, Melstrom, Laleh, Li, Hongzhi, Timchenko, Nikolai, Deng, Xiaolan, Huang, Wendong, Rosen, Steven T., Tian, Jingyan, Xu, Lin, Diao, Jiajie, Chen, Chun-Wei, Chen, Jianjun, Shen, Baiyong, Chen, Hao, Su, Rui
المساهمون: U.S. National Institutes of Health, American Association for the Study of Liver Diseases (AASLD) Foundation, Margaret E. Early Medical Research Trust, Leukemia Research Foundation, the Simms/Mann Family Foundation
المصدر: Journal of Hematology & Oncology ; volume 17, issue 1 ; ISSN 1756-8722
بيانات النشر: Springer Science and Business Media LLC
سنة النشر: 2024
مصطلحات موضوعية: Cancer Research, Oncology, Molecular Biology, Hematology
الوصف: Background While liver cancer stem cells (CSCs) play a crucial role in hepatocellular carcinoma (HCC) initiation, progression, recurrence, and treatment resistance, the mechanism underlying liver CSC self-renewal remains elusive. We aim to characterize the role of Methyltransferase 16 (METTL16), a recently identified RNA N 6 -methyladenosine (m 6 A) methyltransferase, in HCC development/maintenance, CSC stemness, as well as normal hepatogenesis. Methods Liver-specific Mettl16 conditional KO (cKO) mice were generated to assess its role in HCC pathogenesis and normal hepatogenesis. Hydrodynamic tail-vein injection (HDTVi)-induced de novo hepatocarcinogenesis and xenograft models were utilized to determine the role of METTL16 in HCC initiation and progression. A limiting dilution assay was utilized to evaluate CSC frequency. Functionally essential targets were revealed via integrative analysis of multi-omics data, including RNA-seq, RNA immunoprecipitation (RIP)-seq, and ribosome profiling. Results METTL16 is highly expressed in liver CSCs and its depletion dramatically decreased CSC frequency in vitro and in vivo. Mettl16 KO significantly attenuated HCC initiation and progression, yet only slightly influenced normal hepatogenesis. Mechanistic studies, including high-throughput sequencing, unveiled METTL16 as a key regulator of ribosomal RNA (rRNA) maturation and mRNA translation and identified eukaryotic translation initiation factor 3 subunit a ( eIF3a ) transcript as a bona-fide target of METTL16 in HCC. In addition, the functionally essential regions of METTL16 were revealed by CRISPR gene tiling scan, which will pave the way for the development of potential inhibitor(s). Conclusions Our findings highlight the crucial oncogenic role of METTL16 in promoting HCC pathogenesis and enhancing liver CSC self-renewal through augmenting mRNA translation efficiency.
نوع الوثيقة: article in journal/newspaper
اللغة: English
DOI: 10.1186/s13045-024-01526-9
DOI: 10.1186/s13045-024-01526-9.pdf
DOI: 10.1186/s13045-024-01526-9/fulltext.html
الإتاحة: https://doi.org/10.1186/s13045-024-01526-9Test
حقوق: https://creativecommons.org/licenses/by/4.0Test ; https://creativecommons.org/licenses/by/4.0Test
رقم الانضمام: edsbas.16752608
قاعدة البيانات: BASE