Alteration of energy metabolism in the pathogenesis of bile duct lesions in primary biliary cirrhosis

التفاصيل البيبلوغرافية
العنوان: Alteration of energy metabolism in the pathogenesis of bile duct lesions in primary biliary cirrhosis
المؤلفون: Satomi Kasashima, Yasuni Nakanuma, Yasuhiko Yamamoto, Hajime Ohta, Shinji Shimoda, Kenichi Harada, Yasunori Sato, Hiroshi Inoue, Yuko Kakuda, Atsuhiro Kawashima, Hiroko Ikeda
المصدر: Journal of Clinical Pathology. 67(5):396-402
سنة النشر: 2014
مصطلحات موضوعية: Male, Pyruvate decarboxylation, medicine.medical_specialty, Pyruvate dehydrogenase kinase, Cholangitis, PDK4, Pyruvate Dehydrogenase Complex, Protein Serine-Threonine Kinases, Biology, Pathology and Forensic Medicine, Primary biliary cirrhosis, Downregulation and upregulation, B-Cell Lymphoma 3 Protein, Proto-Oncogene Proteins, Internal medicine, medicine, Humans, Glycolysis, RNA, Messenger, Beta oxidation, Cells, Cultured, Liver Cirrhosis, Biliary, Estrogen Receptor alpha, Pyruvate Dehydrogenase Acetyl-Transferring Kinase, Epithelial Cells, hemic and immune systems, General Medicine, Middle Aged, medicine.disease, Pyruvate dehydrogenase complex, Immunohistochemistry, Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha, Molecular biology, Bile Ducts, Intrahepatic, Endocrinology, Gene Expression Regulation, Case-Control Studies, Female, Energy Metabolism, Transcription Factors
الوصف: Aim Primary biliary cirrhosis (PBC) is characterised by antimitochondrial antibody against the pyruvate dehydrogenase complex (PDC) and chronic non-suppurative destructive cholangitis (CNSDC). Pyruvate oxidation to acetyl-CoA by PDC is a key step in the glycolytic system. Oestrogen-related receptor-α (ERRα) is functionally activated by inducible coactivators such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and Bcl-3. Moreover, the PGC-1α–ERRα axis interrupts glycolytic metabolism through the upregulation of pyruvate dehydrogenase kinase, isozyme 4 (PDK4), which functionally inhibits PDC-E1α and stimulates fatty acid oxidation. In this study, we investigated the PGC-1α–ERRα axis to clarify PDC dysfunction in CNSDC of PBC. Methods The expression of PGC-1α, Bcl-3, ERRα, PDK4 and PDC-E1α was examined by immunohistochemistry in liver sections from patients with PBC and controls. The expression of these molecules, the activity of mitochondrial dehydrogenase and PDC, and their alterations by starvation, a treatment used to induce PGC-1α expression, were examined in cultured human biliary epithelial cells (BECs). Results The nuclear expression of PGC-1α, Bcl-3 and ERRα was exclusively observed in CNSDC of PBC. Moreover, the expression of PDK4 and PDC-E1α was enhanced in CNSDC of PBC. In cultured BECs, the amplification of Bcl-3 and PDK4 mRNAs by reverse-transcription-PCR and mitochondrial dehydrogenase activity were markedly increased but PDC activity was decreased according to the upregulation of PGC-1α. Conclusions In CNSDC of PBC, the activation of the ERRα–PGC-1α axis was exclusively observed, suggesting the interference of PDC-related glycolytic function and the induction of the fatty acid degradation system. The switching of the cellular energy system is possibly associated with the pathogenesis of CNSDC in PBC.
اللغة: English
تدمد: 1472-4146
الوصول الحر: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ce5bf4c49a01e082fdfd1f81a847e581Test
http://hdl.handle.net/2297/39329Test
حقوق: OPEN
رقم الانضمام: edsair.doi.dedup.....ce5bf4c49a01e082fdfd1f81a847e581
قاعدة البيانات: OpenAIRE