Assessment of the impact of CT calibration procedures for proton therapy planning on pediatric treatments

التفاصيل البيبلوغرافية
العنوان: Assessment of the impact of CT calibration procedures for proton therapy planning on pediatric treatments
المؤلفون: Esther Bär, A. Warry, Ying Zhang, Charles-Antoine Collins-Fekete, V. Rompokos, A. Poynter, Gary Royle, Mark N. Gaze
المصدر: Medical Physics. 48:5202-5218
بيانات النشر: Wiley, 2021.
سنة النشر: 2021
مصطلحات موضوعية: Male, Phantoms, Imaging, business.industry, Infant, Newborn, Planning target volume, Soft tissue, General Medicine, medicine.disease, Pediatrics, Imaging phantom, Hounsfield scale, Calibration, Proton Therapy, Humans, Medicine, Female, Sarcoma, Child, Tomography, X-Ray Computed, Head and neck, Nuclear medicine, business, Proton therapy
الوصف: PURPOSE Relative stopping powers (RSPs) for proton therapy are estimated using single-energy computed tomography (SECT), calibrated with standardized tissues of the adult male. It is assumed that those tissues are representative of tissues of all age and sex. Female, male, and pediatric tissues differ from one another in density and composition. In this study, we use tabulated pediatric tissues and computational phantoms to investigate the impact of this assumption on pediatric proton therapy. The potential of dual-energy CT (DECT) to improve the accuracy of these calculations is explored. METHODS We study 51 human body tissues, categorized into male/female for the age groups newborn, 1-, 5-, 10-, and 15-year-old children, and adult, with given compositions and densities. CT numbers are simulated and RSPs are estimated using SECT and DECT methods. Estimated tissue RSPs from each method are compared to theoretical RSPs. The dose and range errors of each approach are evaluated on three computational phantoms (Ewing's sarcoma, salivary sarcoma, and glioma) derived from pediatric proton therapy patients. RESULTS With SECT, soft tissues have mean estimation errors and standard deviation up to (1.96 ± 4.18)% observed in newborns, compared to (0.20 ± 1.15)% in adult males. Mean estimation errors for bones are up to (-3.35 ± 4.76)% in pediatrics as opposed to (0.10 ± 0.66)% in adult males. With DECT, mean errors reduce to (0.17 ± 0.13)% and (0.23 ± 0.22)% in newborns (soft tissues/bones). With SECT, dose errors in a Ewing's sarcoma phantom are exceeding 5 Gy (10% of prescribed dose) at the distal end of the treatment field, with volumes of dose errors >5 Gy of Vdiff>5=4630.7 mm3 . Similar observations are made in the head and neck phantoms, with overdoses to healthy tissue exceeding 2 Gy (4%). A systematic Bragg peak shift resulting in either over- or underdosage of healthy tissues and target volumes depending on the crossed tissues RSP prediction errors is observed. Water equivalent range errors of single beams are between -1.53 and 5.50 mm (min, max) (Ewing's sarcoma phantom), -0.78 and 3.62 mm (salivary sarcoma phantom), and -0.43 and 1.41 mm (glioma phantom). DECT can reduce dose errors to
تدمد: 2473-4209
0094-2405
الوصول الحر: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ce43b33e9aaceb87d2fc0086f087bd06Test
https://doi.org/10.1002/mp.15062Test
حقوق: OPEN
رقم الانضمام: edsair.doi.dedup.....ce43b33e9aaceb87d2fc0086f087bd06
قاعدة البيانات: OpenAIRE