The synthetic triterpenoids CDDO-TFEA and CDDO-Me, but not CDDO, promote nuclear exclusion of BACH1 impairing its activity

التفاصيل البيبلوغرافية
العنوان: The synthetic triterpenoids CDDO-TFEA and CDDO-Me, but not CDDO, promote nuclear exclusion of BACH1 impairing its activity
المؤلفون: Laura Casares, Rita Moreno, Kevin X. Ali, Maureen Higgins, Sharadha Dayalan Naidu, Graham Neill, Lena Cassin, Anders E. Kiib, Esben B. Svenningsen, Alberto Minassi, Tadashi Honda, Thomas B. Poulsen, Clotilde Wiel, Volkan I. Sayin, Albena T. Dinkova-Kostova, David Olagnier, Laureano de la Vega
المصدر: Casares, L, Moreno, R, Ali, K X, Higgins, M, Dayalan Naidu, S, Neill, G, Cassin, L, Kiib, A E, Svenningsen, E B, Minassi, A, Honda, T, Poulsen, T B, Wiel, C, Sayin, V I, Dinkova-Kostova, A T, Olagnier, D & de la Vega, L 2022, ' The synthetic triterpenoids CDDO-TFEA and CDDO-Me, but not CDDO, promote nuclear exclusion of BACH1 impairing its activity ', Redox Biology, vol. 51, 102291 . https://doi.org/10.1016/j.redox.2022.102291Test
Casares, L, Moreno, R, Ali, K X, Higgins, M, Dayalan Naidu, S, Neill, G, Cassin, L, Kiib, A E, Svenningsen, E B, Minassi, A, Honda, T, Poulsen, T B, Wiel, C, Sayin, V I, Dinkova-Kostova, A T, Olagnier, D & de la Vega, L 2022, ' The synthetic triterpenoids CDDO-TFEA and CDDO-Me, but not CDDO, promote nuclear exclusion of BACH1 impairing its activity ', Redox Biology, vol. 51, pp. 102291 . https://doi.org/10.1016/j.redox.2022.102291Test
سنة النشر: 2022
مصطلحات موضوعية: Oxidative Stress, Kelch-Like ECH-Associated Protein 1, HMOX1, NF-E2-Related Factor 2, CDDO, Organic Chemistry, Clinical Biochemistry, BACH1, Oleanolic Acid, Biochemistry, Triterpenes, NRF2
الوصف: The transcription factor BACH1 is a potential therapeutic target for a variety of chronic conditions linked to oxidative stress and inflammation, as well as cancer metastasis. However, only a few BACH1 degraders/inhibitors have been described. BACH1 is a transcriptional repressor of heme oxygenase 1 (HMOX1), which is positively regulated by transcription factor NRF2 and is highly inducible by derivatives of the synthetic oleanane triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO). Most of the therapeutic activities of these compounds are due to their anti-inflammatory and antioxidant properties, which are widely attributed to their ability to activate NRF2. However, with such a broad range of action, these compounds have other molecular targets that have not been fully identified and could also be of importance for their therapeutic profile. Herein we identified BACH1 as a target of two CDDO-derivatives (CDDO-Me and CDDO-TFEA), but not of CDDO. While both CDDO and CDDO-derivatives activate NRF2 similarly, only CDDO-Me and CDDO-TFEA inhibit BACH1, which explains the much higher potency of these CDDO-derivatives as HMOX1 inducers compared with unmodified CDDO. Notably, we demonstrate that CDDO-Me and CDDO-TFEA inhibit BACH1 via a novel mechanism that reduces BACH1 nuclear levels while accumulating its cytoplasmic form. In an in vitro model, both CDDO-derivatives impaired lung cancer cell invasion in a BACH1-dependent and NRF2-independent manner, while CDDO was inactive. Altogether, our study identifies CDDO-Me and CDDO-TFEA as dual KEAP1/BACH1 inhibitors, providing a rationale for further therapeutic uses of these drugs.
اللغة: English
الوصول الحر: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::155dea4f5960ffcc085d9f8477eae799Test
https://pure.au.dk/portal/da/publications/the-synthetic-triterpenoids-cddotfea-and-cddome-but-not-cddo-promote-nuclear-exclusion-of-bach1-impairing-its-activityTest(66402709-7e58-4b88-af6c-815f1189769a).html
حقوق: OPEN
رقم الانضمام: edsair.doi.dedup.....155dea4f5960ffcc085d9f8477eae799
قاعدة البيانات: OpenAIRE