دورية أكاديمية

Non-Equilibrium Long-Wave Infrared HgCdTe Photodiodes: How the Exclusion and Extraction Junctions Work Separately.

التفاصيل البيبلوغرافية
العنوان: Non-Equilibrium Long-Wave Infrared HgCdTe Photodiodes: How the Exclusion and Extraction Junctions Work Separately.
المؤلفون: Kopytko, Małgorzata, Majkowycz, Kinga, Sobieski, Jan, Manyk, Tetiana, Gawron, Waldemar
المصدر: Materials (1996-1944); Jun2024, Vol. 17 Issue 11, p2551, 11p
مصطلحات موضوعية: METAL organic chemical vapor deposition, CARRIER density, HETEROJUNCTIONS, INFRARED detectors, NANOWIRE devices, PHOTODIODES
مستخلص: The cooling requirement for long-wave infrared detectors still creates significant limitations to their functionality. The phenomenon of minority-carrier exclusion and extraction in narrow-gap semiconductors has been intensively studied for over three decades and used to increase the operating temperatures of devices. Decreasing free carrier concentrations below equilibrium values by a stationary non-equilibrium depletion of the device absorber leads to a suppression of Auger generation. In this paper, we focus on analyzing exclusion and extraction effects separately, based on experimental and theoretical results for a HgCdTe photodiode. To carry out an experiment, the n+-P+-π-N+ heterostructure was grown by metal organic chemical vapor deposition on CdTe-buffered GaAs substrate. In order to separate the extraction and exclusive junctions, three different devices were evaluated: (1) a detector etched through the entire n+-P+-π-N+ heterostructure, (2) a detector made of the P+-π photoconductive junction and (3) a detector made of the π-N+ photodiode junction. For each device, the dark current density–voltage characteristics were measured at a high-temperature range, from 195 K to 300 K. Next, the carrier concentration distribution across the entire heterostructure and individual junctions was calculated using the APSYS simulation program. It was shown that when the n+-P+-π-N+ photodiode is reverse biased, the electron concentration in the π absorber drops below its thermal equilibrium value, due to the exclusion effect at the P+-π junction and the extraction effect at the π-N+ junction. To maintain the charge neutrality, the hole concentration is also reduced below the equilibrium value and reaches the absorber doping level (NA), leading to the Auger generation rate's reduction by a factor of 2ni/NA, where ni is the intrinsic carrier concentration. Our experiment conducted for three separate detectors showed that the exclusion P+-π photoconductive junction has the most significant effect on the Auger suppression—the majority of the hole concentration drops to the doping level not only at the P+-π interface but also deep inside the π absorber. [ABSTRACT FROM AUTHOR]
Copyright of Materials (1996-1944) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:19961944
DOI:10.3390/ma17112551