دورية أكاديمية

Joubert syndrome-derived induced pluripotent stem cells show altered neuronal differentiation in vitro.

التفاصيل البيبلوغرافية
العنوان: Joubert syndrome-derived induced pluripotent stem cells show altered neuronal differentiation in vitro.
المؤلفون: De Mori, Roberta, Tardivo, Silvia, Pollara, Lidia, Giliani, Silvia Clara, Ali, Eltahir, Giordano, Lucio, Leuzzi, Vincenzo, Fischetto, Rita, Gener, Blanca, Diprima, Santo, Morelli, Marco J., Monti, Maria Cristina, Sottile, Virginie, Valente, Enza Maria
المصدر: Cell & Tissue Research; May2024, Vol. 396 Issue 2, p255-267, 13p
مصطلحات موضوعية: INDUCED pluripotent stem cells, NEURONAL differentiation, GRANULE cells, JOUBERT syndrome, EYE movements
مستخلص: Joubert syndrome (JS) is a recessively inherited congenital ataxia characterized by hypotonia, psychomotor delay, abnormal ocular movements, intellectual disability, and a peculiar cerebellar and brainstem malformation, the "molar tooth sign." Over 40 causative genes have been reported, all encoding for proteins implicated in the structure or functioning of the primary cilium, a subcellular organelle widely present in embryonic and adult tissues. In this paper, we developed an in vitro neuronal differentiation model using patient-derived induced pluripotent stem cells (iPSCs), to evaluate possible neurodevelopmental defects in JS. To this end, iPSCs from four JS patients harboring mutations in distinct JS genes (AHI1, CPLANE1, TMEM67, and CC2D2A) were differentiated alongside healthy control cells to obtain mid-hindbrain precursors and cerebellar granule cells. Differentiation was monitored over 31 days through the detection of lineage-specific marker expression by qRT-PCR, immunofluorescence, and transcriptomics analysis. All JS patient-derived iPSCs, regardless of the mutant gene, showed a similar impairment to differentiate into mid-hindbrain and cerebellar granule cells when compared to healthy controls. In addition, analysis of primary cilium count and morphology showed notable ciliary defects in all differentiating JS patient-derived iPSCs compared to controls. These results confirm that patient-derived iPSCs are an accessible and relevant in vitro model to analyze cellular phenotypes connected to the presence of JS gene mutations in a neuronal context. [ABSTRACT FROM AUTHOR]
Copyright of Cell & Tissue Research is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:0302766X
DOI:10.1007/s00441-024-03876-9