دورية أكاديمية

The Genetic Landscape of Children Born Small for Gestational Age with Persistent Short Stature.

التفاصيل البيبلوغرافية
العنوان: The Genetic Landscape of Children Born Small for Gestational Age with Persistent Short Stature.
المؤلفون: Toni, Ledjona, Plachy, Lukas, Dusatkova, Petra, Amaratunga, Shenali Anne, Elblova, Lenka, Sumnik, Zdenek, Kolouskova, Stanislava, Snajderova, Marta, Obermannova, Barbora, Pruhova, Stepanka, Lebl, Jan
المصدر: Hormone Research in Paediatrics; 2024, Vol. 97 Issue 1, p40-52, 13p
مصطلحات موضوعية: SMALL for gestational age, SHORT stature, PITUITARY dwarfism, BIRTH weight, GROWTH plate, GESTATIONAL age
مستخلص: Introduction: Among children born small for gestational age, 10–15% fail to catch up and remain short (SGA-SS). The underlying mechanisms are mostly unknown. We aimed to decipher genetic aetiologies of SGA-SS within a large single-centre cohort. Methods: Out of 820 patients treated with growth hormone (GH), 256 were classified as SGA-SS (birth length and/or birth weight <−2 SD for gestational age and life-minimum height <−2.5 SD). Those with the DNA triplet available (child and both parents) were included in the study (176/256). Targeted testing (karyotype/FISH/MLPA/specific Sanger sequencing) was performed if a specific genetic disorder was clinically suggestive. All remaining patients underwent MS-MLPA to identify Silver-Russell syndrome, and those with unknown genetic aetiology were subsequently examined using whole-exome sequencing or targeted panel of 398 growth-related genes. Genetic variants were classified using ACMG guidelines. Results: The genetic aetiology was elucidated in 74/176 (42%) children. Of these, 12/74 (16%) had pathogenic or likely pathogenic (P/LP) gene variants affecting pituitary development (LHX4, OTX2, PROKR2, PTCH1, POU1F1), the GH-IGF-1 or IGF-2 axis (GHSR, IGFALS, IGF1R, STAT3, HMGA2), 2/74 (3%) the thyroid axis (TRHR, THRA), 17/74 (23%) the cartilaginous matrix (ACAN, various collagens, FLNB, MATN3), and 7/74 (9%) the paracrine chondrocyte regulation (FGFR3, FGFR2, NPR2). In 12/74 (16%), we revealed P/LP affecting fundamental intracellular/intranuclear processes (CDC42, KMT2D, LMNA, NSD1, PTPN11, SRCAP, SON, SOS1, SOX9, TLK2). SHOX deficiency was found in 7/74 (9%), Silver-Russell syndrome in 12/74 (16%) (11p15, UPD7), and miscellaneous chromosomal aberrations in 5/74 (7%) children. Conclusions: The high diagnostic yield sheds a new light on the genetic landscape of SGA-SS, with a central role for the growth plate with substantial contributions from the GH-IGF-1 and thyroid axes and intracellular regulation and signalling. [ABSTRACT FROM AUTHOR]
Copyright of Hormone Research in Paediatrics is the property of Karger AG and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:16632818
DOI:10.1159/000530521