دورية أكاديمية

A Novel Approach: Investigating the Intracellular Clearance Mechanism of Glyceraldehyde-Derived Advanced Glycation End-Products Using the Artificial Checkpoint Kinase 1 d270KD Mutant as a Substrate Model.

التفاصيل البيبلوغرافية
العنوان: A Novel Approach: Investigating the Intracellular Clearance Mechanism of Glyceraldehyde-Derived Advanced Glycation End-Products Using the Artificial Checkpoint Kinase 1 d270KD Mutant as a Substrate Model.
المؤلفون: Takeda, Kenji, Sakai-Sakasai, Akiko, Kajinami, Kouji, Takeuchi, Masayoshi
المصدر: Cells (2073-4409); Dec2023, Vol. 12 Issue 24, p2838, 26p
مصطلحات موضوعية: CHECKPOINT kinase 1, GLATIRAMER acetate, ADVANCED glycation end-products, RECEPTOR for advanced glycation end products (RAGE)
مستخلص: Advanced glycation end-products (AGEs), formed through glyceraldehyde (GA) as an intermediate in non-enzymatic reactions with intracellular proteins, are cytotoxic and have been implicated in the pathogenesis of various diseases. Despite their significance, the mechanisms underlying the degradation of GA-derived AGEs (GA-AGEs) remain unclear. In the present study, we found that N-terminal checkpoint kinase 1 cleavage products (CHK1-CPs) and their mimic protein, d270WT, were degraded intracellularly post-GA exposure. Notably, a kinase-dead d270WT variant (d270KD) underwent rapid GA-induced degradation, primarily via the ubiquitin–proteasome pathway. The high-molecular-weight complexes formed by the GA stimulation of d270KD were abundant in the RIPA-insoluble fraction, which also contained high levels of GA-AGEs. Immunoprecipitation experiments indicated that the high-molecular-weight complexes of d270KD were modified by GA-AGEs and that p62/SQSTM1 was one of its components. The knockdown of p62 or treatment with chloroquine reduced the amount of high-molecular-weight complexes in the RIPA-insoluble fraction, indicating its involvement in the formation of GA-AGE aggregates. The present results suggest that the ubiquitin–proteasome pathway and p62 play a role in the degradation and aggregation of intracellular GA-AGEs. This study provides novel insights into the mechanisms underlying GA-AGE metabolism and may lead to the development of novel therapeutic strategies for diseases associated with the accumulation of GA-AGEs. [ABSTRACT FROM AUTHOR]
Copyright of Cells (2073-4409) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:20734409
DOI:10.3390/cells12242838