دورية أكاديمية

The importance of facies, grain size and clay content in controlling fluvial reservoir quality – an example from the Triassic Skagerrak Formation, Central North Sea, UK.

التفاصيل البيبلوغرافية
العنوان: The importance of facies, grain size and clay content in controlling fluvial reservoir quality – an example from the Triassic Skagerrak Formation, Central North Sea, UK.
المؤلفون: Aro, Oluwafemi E., Jones, Stuart J., Meadows, Neil S., Gluyas, Jon, Charlaftis, Dimitrios
المصدر: Petroleum Geoscience; May2023, Vol. 29 Issue 2, p1-31, 31p
مصطلحات موضوعية: CLAY, FACIES, PARAGENESIS, FLUVIAL geomorphology, DRILL core analysis, SANDSTONE, QUARTZ, GRAIN size
مصطلحات جغرافية: UNITED Kingdom
مستخلص: Clay-coated grains play an important role in preserving reservoir quality in high-pressure, high-temperature (HPHT) sandstone reservoirs. Previous studies have shown that the completeness of coverage of clay coats effectively inhibits quartz cementation. However, the main factors controlling the extent of coverage remain controversial. This research sheds light on the influence of different depositional processes and hydrodynamics on clay-coat coverage and reservoir quality evolution. Detailed petrographic analysis of core samples from the Triassic fluvial Skagerrak Formation, Central North Sea, identified that channel facies offer the best reservoir quality; however, this varies as a function of depositional energy, grain size and clay content. Due to their coarser grain size and lower clay content, high-energy channel sandstones have higher permeabilities (100–1150 mD) than low-energy channel sandstones (<100 mD). Porosity is preserved due to grain-coating clays, with clay-coat coverage correlating with grain size, clay-coat volume and quartz cement. Higher coverage (70–98%) occurs in finer-grained, low-energy channel sandstones. In contrast, lower coverage (<50%) occurs in coarser-grained, high-energy channel sandstones. Quartz cement modelling showed a clear correlation between available quartz surface area and quartz cement volume. Although high-energy channel sandstones have better reservoir quality, they present moderate quartz overgrowths due to lesser coat coverage, and are thus prone to allowing further quartz cementation and porosity loss in ultra-deep HPHT settings. Conversely, low-energy channel sandstones containing moderate amounts of clay occurring as clay coats are more likely to preserve porosity in ultra-deep HPHT settings and form viable reservoirs for exploration. Supplementary material: of data and technique used in this study are available at https://doi.org/10.6084/m9.figshare.c.6438450Test [ABSTRACT FROM AUTHOR]
Copyright of Petroleum Geoscience is the property of Geological Society Publishing House and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:13540793
DOI:10.1144/petgeo2022-043