دورية أكاديمية

Genomic Analysis of Haloarchaea from Diverse Environments, including Permian Halite, Reveals Diversity of Ultraviolet Radiation Survival and DNA Photolyase Gene Variants.

التفاصيل البيبلوغرافية
العنوان: Genomic Analysis of Haloarchaea from Diverse Environments, including Permian Halite, Reveals Diversity of Ultraviolet Radiation Survival and DNA Photolyase Gene Variants.
المؤلفون: Nag, Sagorika, DasSarma, Priya, Crowley, David J., Hamawi, Rafael, Tepper, Samantha, Anton, Brian P., Guzmán, Daniel, DasSarma, Shiladitya
المصدر: Microorganisms; Mar2023, Vol. 11 Issue 3, p607, 17p
مصطلحات موضوعية: GENOMICS, ULTRAVIOLET radiation, GENETIC variation, HALOBACTERIUM, SALT
مستخلص: Ultraviolet (UV) radiation responses of extremophilic and archaeal microorganisms are of interest from evolutionary, physiological, and astrobiological perspectives. Previous studies determined that the halophilic archaeon, Halobacterium sp. NRC-1, which survives in multiple extremes, is highly tolerant of UV radiation. Here, Halobacterium sp. NRC-1 UV tolerance was compared to taxonomically diverse Haloarchaea isolated from high-elevation salt flats, surface warm and cold hypersaline lakes, and subsurface Permian halite deposits. Haloterrigena/Natrinema spp. from subsurface halite deposits were the least tolerant after exposure to photoreactivating light. This finding was attributed to deviation of amino acid residues in key positions in the DNA photolyase enzyme or to the complete absence of the photolyase gene. Several Halobacterium, Halorubrum and Salarchaeum species from surface environments exposed to high solar irradiance were found to be the most UV tolerant, and Halorubrum lacusprofundi from lake sediment was of intermediate character. These results indicate that high UV tolerance is not a uniform character trait of Haloarchaea and is likely reflective of UV exposure experienced in their environment. This is the first report correlating natural UV tolerance to photolyase gene functionality among Haloarchaea and provides insights into their survival in ancient halite deposits and potentially on the surface of Mars. [ABSTRACT FROM AUTHOR]
Copyright of Microorganisms is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:20762607
DOI:10.3390/microorganisms11030607