دورية أكاديمية

TP53INP2 Contributes to TGF-β2-Induced Autophagy during the Epithelial–Mesenchymal Transition in Posterior Capsular Opacification Development.

التفاصيل البيبلوغرافية
العنوان: TP53INP2 Contributes to TGF-β2-Induced Autophagy during the Epithelial–Mesenchymal Transition in Posterior Capsular Opacification Development.
المؤلفون: Cui, Yilei, Yang, Hao, Shi, Silu, Ping, Xiyuan, Zheng, Sifan, Tang, Xiajing, Yu, Xiaoning, Shentu, Xingchao
المصدر: Cells (2073-4409); Aug2022, Vol. 11 Issue 15, p2385-2385, 13p
مصطلحات موضوعية: EPITHELIAL-mesenchymal transition, CRYSTALLINE lens, TRANSMISSION electron microscopy, TUMOR proteins, P53 antioncogene, CELL migration, RAPAMYCIN, AUTOPHAGY
مستخلص: Background: Posterior capsule opacification (PCO) is the most common complication after cataract surgery, in which increased levels of transforming growth factor-beta 2 (TGF-β2) accelerate PCO formation; however, the pathological mechanisms are not fully understood. This study aims to explore the regulation mechanism of TGF-β2 in PCO formation via its autophagic functions. Methods: The autophagic effect of TGF-β2 was detected by transmission electron microscopy (TEM), Western blotting, and immunofluorescence analysis. The association between autophagy and the epithelial–mesenchymal transition (EMT) was evaluated by qPCR and Western blotting. The transcriptome analysis was used to uncover the molecular mechanism of TGF-β2-induced PCO formation. Results: TGF-β2 specifically promotes autophagy flux in human lens epithelial cells. The activation of autophagy by rapamycin can promote EMT marker synthesis and improve cell migration. However, the inhibition of autophagy by 3-MA attenuates EMT. To uncover the molecular mechanisms, we performed RNA sequencing and found that TGF-β2 elevated tumor protein p53-inducible nuclear protein2 (TP53INP2) expression, which was accompanied by a nuclear-to-cytoplasm translocation. Moreover, the knockdown of TP53INP2 blocked the TGF-β2-induced autophagy and EMT processes, revealing that TP53INP2 plays an important role in TGF-β2-induced autophagy during EMT. Conclusions: Taken together, the results of this study suggested that TP53INP2 was a novel regulator of PCO development by TGF-β2, and notably, TP53INP2, may be a potential target for the pharmacological treatment of PCO. [ABSTRACT FROM AUTHOR]
Copyright of Cells (2073-4409) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:20734409
DOI:10.3390/cells11152385