دورية أكاديمية

Impairing committed cholesterol biosynthesis in white matter astrocytes, but not grey matter astrocytes, enhances in vitro myelination.

التفاصيل البيبلوغرافية
العنوان: Impairing committed cholesterol biosynthesis in white matter astrocytes, but not grey matter astrocytes, enhances in vitro myelination.
المؤلفون: Werkman, Inge L., Kövilein, Janine, Jonge, Jenny C., Baron, Wia
المصدر: Journal of Neurochemistry; Mar2021, Vol. 156 Issue 5, p624-641, 18p
مصطلحات موضوعية: OLIGODENDROGLIA, WHITE matter (Nerve tissue), VOXEL-based morphometry, MYELINATION, CHOLESTEROL, ASTROCYTES, UNSATURATED fatty acids
مستخلص: Remyelination is a regenerative process that is essential to recover saltatory conduction and to prevent neurodegeneration upon demyelination. The formation of new myelin involves the differentiation of oligodendrocyte progenitor cells (OPCs) toward oligodendrocytes and requires high amounts of cholesterol. Astrocytes (ASTRs) modulate remyelination by supplying lipids to oligodendrocytes. Remarkably, remyelination is more efficient in grey matter (GM) than in white matter (WM), which may relate to regional differences in ASTR subtype. Here, we show that a feeding layer of gmASTRs was more supportive to in vitro myelination than a feeding layer of wmASTRs. While conditioned medium from both gmASTRs and wmASTRs accelerated gmOPC differentiation, wmOPC differentiation is enhanced by secreted factors from gmASTRs, but not wmASTRs. In vitro analyses revealed that gmASTRs secreted more cholesterol than wmASTRs. Cholesterol efflux from both ASTR types was reduced upon exposure to pro‐inflammatory cytokines, which was mediated via cholesterol transporter ABCA1, but not ABCG1, and correlated with a minor reduction of myelin membrane formation by oligodendrocytes. Surprisingly, a wmASTR knockdown of Fdft1 encoding for squalene synthase (SQS), an enzyme essential for the first committed step in cholesterol biosynthesis, enhanced in vitro myelination. Reduced secretion of interleukin‐1β likely by enhanced isoprenylation, and increased unsaturated fatty acid synthesis, both pathways upstream of SQS, likely masked the effect of reduced levels of ASTR‐derived cholesterol. Hence, our findings indicate that gmASTRs export more cholesterol and are more supportive to myelination than wmASTRs, but specific inhibition of cholesterol biosynthesis in ASTRs is beneficial for wmASTR‐mediated modulation of myelination. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Neurochemistry is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:00223042
DOI:10.1111/jnc.15113