دورية أكاديمية

An optical neural chip for implementing complex-valued neural network.

التفاصيل البيبلوغرافية
العنوان: An optical neural chip for implementing complex-valued neural network.
المؤلفون: Zhang, H., Gu, M., Jiang, X. D., Thompson, J., Cai, H., Paesani, S., Santagati, R., Laing, A., Zhang, Y., Yung, M. H., Shi, Y. Z., Muhammad, F. K., Lo, G. Q., Luo, X. S., Dong, B., Kwong, D. L., Kwek, L. C., Liu, A. Q.
المصدر: Nature Communications; 1/19/2021, Vol. 12 Issue 1, p1-11, 11p
مصطلحات موضوعية: OPTICAL computing, COMPUTING platforms, OPTICAL interference, COMPUTER engineering, ENERGY consumption
مستخلص: Complex-valued neural networks have many advantages over their real-valued counterparts. Conventional digital electronic computing platforms are incapable of executing truly complex-valued representations and operations. In contrast, optical computing platforms that encode information in both phase and magnitude can execute complex arithmetic by optical interference, offering significantly enhanced computational speed and energy efficiency. However, to date, most demonstrations of optical neural networks still only utilize conventional real-valued frameworks that are designed for digital computers, forfeiting many of the advantages of optical computing such as efficient complex-valued operations. In this article, we highlight an optical neural chip (ONC) that implements truly complex-valued neural networks. We benchmark the performance of our complex-valued ONC in four settings: simple Boolean tasks, species classification of an Iris dataset, classifying nonlinear datasets (Circle and Spiral), and handwriting recognition. Strong learning capabilities (i.e., high accuracy, fast convergence and the capability to construct nonlinear decision boundaries) are achieved by our complex-valued ONC compared to its real-valued counterpart. Most demonstrations of optical neural networks for computing have been so far limited to real-valued frameworks. Here, the authors implement complex-valued operations in an optical neural chip that integrates input preparation, weight multiplication and output generation within a single device. [ABSTRACT FROM AUTHOR]
Copyright of Nature Communications is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:20411723
DOI:10.1038/s41467-020-20719-7