دورية أكاديمية

Band gap engineering, electronic state and local atomic structure of Ni doped CeO2 nanoparticles.

التفاصيل البيبلوغرافية
العنوان: Band gap engineering, electronic state and local atomic structure of Ni doped CeO2 nanoparticles.
المؤلفون: Kumari, Kavita, Aljawfi, Rezq Naji, Vij, Ankush, Chae, K. H., Hashim, Mohd., Alvi, P. A., Kumar, Shalendra
المصدر: Journal of Materials Science: Materials in Electronics; Mar2019, Vol. 30 Issue 5, p4562-4571, 10p
مصطلحات موضوعية: BAND gaps, ATOMIC structure, NANOPARTICLES, TRANSMISSION electron microscopy, RAMAN scattering, NANOSTRUCTURED materials, DENSITY functional theory
مستخلص: In cerium dioxide (CeO2) as semiconductor compound, the tuning of band gap energy is a pivotal feature for visible light applications. In this report, nanoparticles (NPs) of Ce1 − xNixO2 (0.0 ≤ x ≤ 0.10) were synthesized through co-precipitation route. The structural, electronic state and optical band gap were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, Raman scattering and UV-Vis spectroscopy. XRD results revealed the single-phase nanocrystalline behavior of CeO2 with cubic fluorite structure. The electronic configuration of the samples, probed via NEXAFS spectra at Ce M5, 4 edges, demonstrated that the cerium exists in Ce4+ and Ce3+ mixed valence states. The formation of Ce3+ ions in the vicinity of oxygen vacancies (Ov) were assessed also via Raman scattering and XANES spectra at Ce L3 edge. The estimated concentrations of Ce3+ were increased from 6 to 13% as the Ni content increase from 0 to 10% respectively. Here, the inclusion of Ni2+ ions into CeO2 network induced additional Ov and simultaneously reduced the optical band gap from 3.9 eV for pure CeO2 to 2.6 eV for 10% Ni doped CeO2 NPs. Therefore, the oxygen loss population seem to be responsible for the band gap reduction. The role of Ov for creating profound donor band near the conduction band and narrowing the band gap energy were discussed. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Materials Science: Materials in Electronics is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:09574522
DOI:10.1007/s10854-019-00746-x