دورية أكاديمية

Biogated mesoporous silica nanoagents for inhibition of cell migration and combined cancer therapy.

التفاصيل البيبلوغرافية
العنوان: Biogated mesoporous silica nanoagents for inhibition of cell migration and combined cancer therapy.
المؤلفون: Wu, Yu1,2 (AUTHOR), Shi, Xiao-Jie1,2 (AUTHOR), Dai, Xin-Yi1,2 (AUTHOR), Song, Tian Shun1,2 (AUTHOR), Li, Xiang-Ling1,2 (AUTHOR) xlli@njtech.edu.cn, Xie, Jing Jing1,2 (AUTHOR) xiej@njtech.edu.cn
المصدر: Microchimica Acta. Jun2024, Vol. 191 Issue 6, p1-9. 9p.
مصطلحات موضوعية: *CELL migration inhibition, *MESOPOROUS silica, *CANCER cell migration, *CANCER treatment, *CANCER cell proliferation
مستخلص: Migration is an initial step in tumor expansion and metastasis; suppressing cellular migration is beneficial to cancer therapy. Herein, we designed a novel biogated nanoagents that integrated the migration inhibitory factor into the mesoporous silica nanoparticle (MSN) drug delivery nanosystem to realize cell migratory inhibition and synergistic treatment. Antisense oligonucleotides (Anti) of microRNA-330-3p, which is positively related with cancer cell proliferation, migration, invasion, and angiogenesis, not only acted as the locker for blocking drugs but also acted as the inhibitory factor for suppressing migration via gene therapy. Synergistic with gene therapy, the biogated nanoagents (termed as MSNs-Gef-Anti) could achieve on-demand drug release based on the intracellular stimulus-recognition and effectively kill tumor cells. Experimental results synchronously demonstrated that the migration suppression ability of MSNs-Gef-Anti nanoagents (nearly 30%) significantly contributed to cancer therapy, and the lethality rate of the non-small-cell lung cancer was up to 70%. This strategy opens avenues for realizing efficacious cancer therapy and should provide an innovative way for pursuing the rational design of advanced nano-therapeutic platforms with the combination of cancer cell migratory inhibition. [ABSTRACT FROM AUTHOR]
قاعدة البيانات: Academic Search Index
الوصف
تدمد:00263672
DOI:10.1007/s00604-024-06401-5