دورية أكاديمية

Calcium-Dependent Regulation of Neuronal Excitability Is Rescued in Fragile X Syndrome by a Tat-Conjugated N-Terminal Fragment of FMRP.

التفاصيل البيبلوغرافية
العنوان: Calcium-Dependent Regulation of Neuronal Excitability Is Rescued in Fragile X Syndrome by a Tat-Conjugated N-Terminal Fragment of FMRP.
المؤلفون: Xiaoqin Zhan1,2, Asmara, Hadhimulya1,2, Pfaffinger, Paul3, Turner, Ray W.1,2,4
المصدر: Journal of Neuroscience. 5/22/2024, Vol. 44 Issue 21, p1-14. 13p.
مصطلحات موضوعية: *FRAGILE X syndrome, *CALCIUM channels, *ION channels, *GRANULE cells, *LONG-term potentiation, *CELL physiology, *CELLULAR signal transduction
مستخلص: Fragile X syndrome (FXS) arises from the loss of fragile X messenger ribonucleoprotein (FMRP) needed for normal neuronal excitability and circuit functions. Recent work revealed that FMRP contributes to mossy fiber long-term potentiation by adjusting the Kv4 A-type current availability through interactions with a Cav3-Kv4 ion channel complex, yet the mechanism has not yet been defined. In this study using wild-type and Fmr1 knock-out (KO) tsA-201 cells and cerebellar sections from male Fmr1 KO mice, we show that FMRP associates with all subunits of the Cav3.1-Kv4.3-KChIP3 complex and is critical to enabling calcium-dependent shifts in Kv4.3 inactivation to modulate the A-type current. Specifically, upon depolarization Cav3 calcium influx activates dualspecific phosphatase 1/6 (DUSP1/6) to deactivate ERK1/2 (ERK) and lower phosphorylation of Kv4.3, a signaling pathway that does not function in Fmr1 KO cells. In Fmr1 KO mouse tissue slices, cerebellar granule cells exhibit a hyperexcitable response to membrane depolarizations. Either incubating Fmr1 KO cells or in vivo administration of a tat-conjugated FMRP N-terminus fragment (FMRP-N-tat) rescued Cav3-Kv4 function and granule cell excitability, with a decrease in the level of DUSP6. Together these data reveal a Cav3-activated DUSP signaling pathway critical to the function of a FMRP-Cav3-Kv4 complex that is misregulated in Fmr1 KO conditions. Moreover, FMRP-N-tat restores function of this complex to rescue calcium-dependent control of neuronal excitability as a potential therapeutic approach to alleviating the symptoms of FXS. [ABSTRACT FROM AUTHOR]
قاعدة البيانات: Academic Search Index
الوصف
تدمد:02706474
DOI:10.1523/JNEUROSCI.0136-24.2024