دورية أكاديمية

SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming.

التفاصيل البيبلوغرافية
العنوان: SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming.
المؤلفون: Wu, Chien-Ting1 (AUTHOR), Lidsky, Peter V.1,2 (AUTHOR), Xiao, Yinghong1,2 (AUTHOR), Cheng, Ran1,3 (AUTHOR), Lee, Ivan T.4,5,6 (AUTHOR), Nakayama, Tsuguhisa6,7 (AUTHOR), Jiang, Sizun4 (AUTHOR), He, Wei1 (AUTHOR), Demeter, Janos1 (AUTHOR), Knight, Miguel G.2 (AUTHOR), Turn, Rachel E.1 (AUTHOR), Rojas-Hernandez, Laura S.8 (AUTHOR), Ye, Chengjin9 (AUTHOR), Chiem, Kevin9 (AUTHOR), Shon, Judy10 (AUTHOR), Martinez-Sobrido, Luis9 (AUTHOR), Bertozzi, Carolyn R.10 (AUTHOR), Nolan, Garry P.4 (AUTHOR), Nayak, Jayakar V.6,11 (AUTHOR), Milla, Carlos8 (AUTHOR)
المصدر: Cell. Jan2023, Vol. 186 Issue 1, p112-112. 1p.
مصطلحات موضوعية: *SARS-CoV-2 Omicron variant, *SARS-CoV-2, *NASAL mucosa, *AIRWAY (Anatomy), *CILIA & ciliary motion, *MICROVILLI
مستخلص: How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia. [Display omitted] • SARS-CoV-2 binds ACE2 on multicilia in airway epithelia immediately upon infection • Depleting motile cilia inhibits viral entry by SARS-CoV-2 and other respiratory viruses • SARS-CoV-2 activates PAK kinases to rearrange airway microvilli driving viral exit • Omicron variants accelerate cilia-dependent entry through the airway mucin barrier Respiratory viruses, including SARS-CoV-2, bypass the defensive mucus/mucin layer of the airway by entering and exiting epithelial cells via their protruding, motile cilia and microvilli. [ABSTRACT FROM AUTHOR]
قاعدة البيانات: Academic Search Index
الوصف
تدمد:00928674
DOI:10.1016/j.cell.2022.11.030